4 resultados para Hormonal Responses
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The deactivation of the inhibitory mechanisms with injections of moxonidine (alpha(2)-adrenoceptor/imidazoline receptor agonist) into the lateral parabrachial nucleus (LPBN) increases hypertonic NaCl intake by intra- or extracellular dehydrated rats. In the present study, we investigated the changes in the urinary sodium and volume, sodium balance, and plasma vasopressin and oxytocin in rats treated with intragastric (i.g.) 2 M NaCl load (2 ml/rat) combined with injections of moxonidine into the LPBN. Male Holtzman rats (n=5-12/group) with stainless steel cannulas implanted bilaterally into LPBN were used. Bilateral injections of moxonidine (0.5 nmol/0.2 mu l) into the LPBN decreased i.g. 2 M NaCIinduced diuresis (4.6 +/- 0.7 vs. vehicle: 7.4 +/- 0.6 ml/120 min) and natriuresis (1.65 +/- 0.29 vs. vehicle: 2.53 +/- 0.17 mEq/120 min), whereas the previous injection of the alpha(2)-adrenoceptor antagonist RX 821002 (10 nmol/0.2 mu l) into the LPBN abolished the effects of moxonidline. Moxonidine injected into the LPBN reduced i.g. 2 M NaCl-induced increase in plasma oxytocin and vasopressin (14.6 +/- 2.8 and 2.2 +/- 0.3 vs. vehicle: 25.7 +/- 7 and 4.3 +/- 0.7 pg/ml, respectively). Moxonidine injected into the LPBN combined with i.g. 2 M NaCl also increased 0.3 M NaCl intake (7.5 +/- 1.7 vs. vehicle: 0.5 +/- 0.2 mEq/2 h) and produced positive sodium balance (2.3 +/- 1.4 vs. vehicle: -1.2 +/- 0.4 mEq/2 h) in rats that had access to water and NaCl. The present results show that LPBN alpha(2)-adrenoceptor activation reduces renal and hormonal responses to intracellular dehydration and increases sodium and water intake, which facilitates sodium retention and body fluid volume expansion. (C) 2012 IBRO. Published by Elsevier Ltd. All rights reserved.
Resumo:
Aim. The purpose of the study was to investigate the relationship between the total volume of load lifted (TVLL) and the rating of perceived exertion (RPE) measures during different resistance training (RT) schemes using the bench press exercise. Methods. The present study was divided into two experiments. In the first experiment, 18 healthy men performed three different RT schemes: a strength oriented scheme (SS), a muscular endurance oriented scheme (ES) and a hypertrophy oriented scheme (HS). TVLL was calculated for each scheme. Mean-RPE and session-RPE were assessed. In the second experiment, 23 men performed two resistance exercise bouts at different intensities (50 %-1RM and 75%-1RM) with matched TVLL. Mean-RPE and session-RPE were also assessed. Results. SS and HS showed higher TVLL and greater RPE scores as compared to ES (P<0.05). No significant difference was observed between SS and HS. It was verified significant positive correlations between TVLL and session-RPE (SS r=0.63, HS r=0.64, ES r=0.56; P<0.05), and between mean-RPE and TVLL (SS r=0.55, HS r=0.52, ES r=0.47; P<0.05) for all schemes. No differences were observed for mean-RPE, session-RPE and TVLL between the 50%-1RM and 75%1RM. Significant positive relationships between TVLL and session-RPE (50 %-1RM r=0.61, 75 %-1RM r=0.66; p<0.05) and between TVLL and mean-RPE (50 %-1RM r=0.51, 75%1RM r=0.49; P<0.05) were observed. Conclusion. The results of this study have shown that the TVLL in RT influences RPE measures. These findings corroborates the existence of a relationship between total work performed (external training load) and perception of effort (internal training load).
Resumo:
The aim of the present study was to compare performance and physiological responses during arm and leg aerobic power tests of combat duration in male child, cadet and senior judo athletes. Power output and physiological parameters, i.e., peak oxygen uptake ((V)over dotO(2)peak), peak ventilation, peak heart rate, lactate, and rate of perceived exertion, of 7 child (under 15 years: age class U15, 12.7 +/- 1.1 yrs), 10 cadet (U17, 14.9 +/- 0.7 yrs) and 8 senior (+20, 29.3 +/- 9.2 yrs) male judo athletes were assessed during incremental tests of combat duration on an arm crank and a cycle ergometer. Children as well as cadets demonstrated higher upper body relative VO(2)peak than seniors (37.3 +/- 4.9, 39.2 +/- 5.0 and 31.0 +/- 2.1 ml.kg(-1).min(-1), respectively); moreover, upper and lower body relative VO(2)peak decreased with increasing age (r = -0.575, p < 0.003 and r = -0.580, p < 0.002, respectively). Children showed lower blood lactate concentrations after cranking as well as after cycling when compared to seniors (7.8 +/- 2.4 vs. 11.4 +/- 2.1 mmol.l(-1) and 7.9 +/- 3.0 vs. 12.0 +/- 1.9 mmol.l(-1), respectively); furthermore, blood lactate values after cranking increased with age (r = 0.473, p < 0.017). These differences should be considered in planning the training for judo athletes of different age classes.
Resumo:
Genotypic, developmental, and environmental factors converge to determine the degree of Crassulacean acid metabolism (CAM) expression. To characterize the signaling events controlling CAM expression in young pineapple (Ananas comosus) plants, this photosynthetic pathway was modulated through manipulations in water availability. Rapid, intense, and completely reversible up-regulation in CAM expression was triggered by water deficit, as indicated by the rise in nocturnal malate accumulation and in the expression and activity of important CAM enzymes. During both up-and down-regulation of CAM, the degree of CAM expression was positively and negatively correlated with the endogenous levels of abscisic acid (ABA) and cytokinins, respectively. When exogenously applied, ABA stimulated and cytokinins repressed the expression of CAM. However, inhibition of water deficit-induced ABA accumulation did not block the up-regulation of CAM, suggesting that a parallel, non-ABA-dependent signaling route was also operating. Moreover, strong evidence revealed that nitric oxide (NO) may fulfill an important role during CAM signaling. Up-regulation of CAM was clearly observed in NO-treated plants, and a conspicuous temporal and spatial correlation was also evident between NO production and CAM expression. Removal of NO from the tissues either by adding NO scavenger or by inhibiting NO production significantly impaired ABA-induced up-regulation of CAM, indicating that NO likely acts as a key downstream component in the ABA-dependent signaling pathway. Finally, tungstate or glutamine inhibition of the NO-generating enzyme nitrate reductase completely blocked NO production during ABA-induced up-regulation of CAM, characterizing this enzyme as responsible for NO synthesis during CAM signaling in pineapple plants.