16 resultados para Hollow emergence trap assemblage
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Thirty-eight stations were sampled in Guanabara Bay, Rio de Janeiro, Brazil, to assess the spatio-temporal diversity and biomass of sublittoral polychaetes. Samples were collected during the dry (September 2000) and rainy season (May 2001) in shallow sublittoral sediments. The polychaete spatial composition showed a heterogeneous distribution throughout the bay. A negative gradient of diversity and biomass was observed towards the inner parts of the bay and sheltered areas. A wide azoic area was found inside the bay. Some high-biomass and low-diversity spots were found near a sewage-discharge point. In these areas, the polychaete biomass increased after the rainy season. A diversified polychaete community was identified around the bay mouth, with no dramatic changes of this pattern between the two sampling periods. Deposit-feeders were dominant in the entire study area. The relative importance of carnivores and omnivores increased towards the outer sector, at stations with coarse sediment fractions. Guanabara Bay can be divided into three main zones with respect to environmental conditions and polychaete diversity and biomass patterns: A) High polychaete diversity, hydrodynamically exposed areas composed of sandy, oxidized or moderately reduced sediments with normoxic conditions in the water column. B) Low diversity and high biomass of deposit and suspension-feeding polychaete species in the middle part of the bay near continental inflows, comprising stations sharing similar proportions of silt, clay and fine sands. C) Azoic area or an impoverished polychaete community in hydrodynamically low-energy areas of silt and clay with extremely reduced sediments, high total organic matter content and hypoxic conditions in the water column, located essentially from the mid-bay towards the north sector. High total organic matter content and hypoxic conditions combined with slow water renewal in the inner bay seemed to play a key role in the polychaete diversity and biomass. Sedimentation processes and organic load coming from untreated sewage into the bay may have negatively affected the survivorship of the fauna.
Resumo:
A fast method was optimized and validated in order to quantify amphetamine-type stimulants (amphetamine, AMP; methamphetamine, MAMP; fenproporex, FPX; 3,4-methylenedioxymethamphetamine, MDMA; and 3,4-methylenedioxyamphetamine, MDA) in human hair samples. The method was based in an initial procedure of decontamination of hair samples (50 mg) with dichloromethane, followed by alkaline hydrolysis and extraction of the amphetamines using hollow-fiber liquid-phase micro extraction (HF-LPME) in the three-phase mode. Gas chromatography-mass spectrometry (GC-MS) was used for identification and quantification of the analytes. The LoQs obtained for all amphetamines (around 0.05 ng/mg) were below the cut-off value (0.2 ng/mg) established by the Society of Hair Testing (SoHT). The method showed to be simple and precise. The intra-day and inter-day precisions were within 10.6% and 11.4%, respectively, with the use of only two deuteratecl internal standards (AMP-d5 and MDMA-d5). By using the weighted least squares linear regression (1/x(2)), the accuracy of the method was satisfied in the lower concentration levels (accuracy values better than 87%). Hair samples collected from six volunteers who reported regular use of amphetamines were submitted to the developed method. Drug detection was observed in all samples of the volunteers. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Background and objectives: Extracorporeal circulation (ECC) may change drug pharmacokinetics as well as brain function. The objectives of this study are to compare emergence time and postoperative sedation intensity assessed by the bispectral index (BIS) and the Ramsay sedation scale in patients undergoing myocardial revascularization (MR) with or without ECC. Method: Ten patients undergoing MR with ECC (ECC group) and 10 with no ECC (no-ECC group) were administered with sufentanyl, propofol 2.0 mu g.mL(-1) and pancuronium target controlled infusion. After surgery, propofol infusion was reduced to 1 mu g.mL(-1) and suspended when extubation was indicated. Patients BIS, Ramsay scale and time to wake up were assessed. Results: The ECC group showed lower BIS values beginning at 60 minutes after surgery (no-ECC = 66 +/- 13 and ECC = 53 +/- 14, p = 0.01) until 120 minutes after infusion (no-ECC = 85 +/- 8 and ECC = 73 +/- 12, p = 0.02). Sedation level measured by the Ramsay scale was higher in the ECC group at 30 minutes after the end of the surgery (no-ECC = 5 +/- 1 and ECC = 6 +/- 0, p = 0.021), at the end of infusion (no-ECC = 5 +/- 1 and ECC = 6 +/- 1, p = 0.012) and 5 minutes after the end of infusion (no-ECC = 4 +/- 1 and ECC = 5 +/- 0.42, p = 0.039). Emergence from anesthesia time was higher in the ECC group (no-ECC = 217 +/- 81 and ECC = 319 +/- 118, p = 0.038). Conclusions: There was a higher intensity of sedation after the end of surgery and a longer wake up time in ECC group, suggesting changes in the pharmacokinetics of propofol or effects of ECC on central nervous system.
Resumo:
The emergence of new infectious bronchitis virus (IBV) genotypes or serotypes along with the poor cross-protection observed among IBV serotypes have complicated the avian infectious bronchitis (IB) control programs in different geographic regions. In Cuba, the lack of genetic information regarding IBV and the increasing epidemiological importance of this virus in Cuban chicken flocks demand further characterization of IBV isolates. In the present work, studies of genetic diversity and phylogenetic relationships among recent IBV isolates from Cuban chicken flocks showing respiratory disorders were performed. Two putative genotypes genetically different to the Massachusetts genotype H120 strain used in the Cuban vaccination program were found in the flocks assessed. In addition, a potential nephropathogenic IBV isolate was found by first time in Cuba. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The use of antiretroviral therapy has proven to be remarkably effective in controlling the progression of human immunodeficiency virus (HIV) infection and prolonging patient's survival. Therapy however may fail and therefore these benefits can be compromised by the emergence of HIV strains that are resistant to the therapy. In view of these facts, the question of finding the reason for which drug-resistant strains emerge during therapy has become a worldwide problem of great interest. This paper presents a deterministic HIV-1 model to examine the mechanisms underlying the emergence of drug-resistance during therapy. The aim of this study is to determine whether, and how fast, antiretroviral therapy may determine the emergence of drug resistance by calculating the basic reproductive numbers. The existence, feasibility and local stability of the equilibriums are also analyzed. By performing numerical simulations we show that Hopf bifurcation may occur. The model suggests that the individuals with drug-resistant infection may play an important role in the epidemic of HIV. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Circadian rhythms in pacemaker cells persist for weeks in constant darkness, while in other types of cells the molecular oscillations that underlie circadian rhythms damp rapidly under the same conditions. Although much progress has been made in understanding the biochemical and cellular basis of circadian rhythms, the mechanisms leading to damped or self-sustained oscillations remain largely unknown. There exist many mathematical models that reproduce the circadian rhythms in the case of a single cell of the Drosophila fly. However, not much is known about the mechanisms leading to coherent circadian oscillation in clock neuron networks. In this work we have implemented a model for a network of interacting clock neurons to describe the emergence (or damping) of circadian rhythms in Drosophila fly, in the absence of zeitgebers. Our model consists of an array of pacemakers that interact through the modulation of some parameters by a network feedback. The individual pacemakers are described by a well-known biochemical model for circadian oscillation, to which we have added degradation of PER protein by light and multiplicative noise. The network feedback is the PER protein level averaged over the whole network. In particular, we have investigated the effect of modulation of the parameters associated with (i) the control of net entrance of PER into the nucleus and (ii) the non-photic degradation of PER. Our results indicate that the modulation of PER entrance into the nucleus allows the synchronization of clock neurons, leading to coherent circadian oscillations under constant dark condition. On the other hand, the modulation of non-photic degradation cannot reset the phases of individual clocks subjected to intrinsic biochemical noise.
Resumo:
Workplace accidents involving machines are relevant for their magnitude and their impacts on worker health. Despite consolidated critical statements, explanation centered on errors of operators remains predominant with industry professionals, hampering preventive measures and the improvement of production-system reliability. Several initiatives were adopted by enforcement agencies in partnership with universities to stimulate production and diffusion of analysis methodologies with a systemic approach. Starting from one accident case that occurred with a worker who operated a brake-clutch type mechanical press, the article explores cognitive aspects and the existence of traps in the operation of this machine. It deals with a large-sized press that, despite being endowed with a light curtain in areas of access to the pressing zone, did not meet legal requirements. The safety devices gave rise to an illusion of safety, permitting activation of the machine when a worker was still found within the operational zone. Preventive interventions must stimulate the tailoring of systems to the characteristics of workers, minimizing the creation of traps and encouraging safety policies and practices that replace judgments of behaviors that participate in accidents by analyses of reasons that lead workers to act in that manner.
Resumo:
In this work we present an agent-based model for the spread of tuberculosis where the individuals can be infected with either drug-susceptible or drug-resistant strains and can also receive a treatment. The dynamics of the model and the role of each one of the parameters are explained. The whole set of parameters is explored to check their importance in the numerical simulation results. The model captures the beneficial impact of the adequate treatment on the prevalence of tuberculosis. Nevertheless, depending on the treatment parameters range, it also captures the emergence of drug resistance. Drug resistance emergence is particularly likely to occur for parameter values corresponding to less efficacious treatment, as usually found in developing countries.
Resumo:
In this work, we have applied sub-Doppler laser cooling to a K-39 magneto-optical trap in order to load a 1071 nm crossed optical dipole trap. The number of atoms loaded into the dipole trap was characterized as a function of the frequency and intensity of the cooling and repump laser beams. For the optimum conditions, the dipole trap has about 2 x 10(6) atoms at an atomic density of 2 x 10(12) cm(-3), with a temperature of about 10 mu K. This technique is a very simple procedure to load a K-39 optical dipole trap without a previous magnetic evaporative cooling step and may find application in other atomic physic systems.
Resumo:
The recently described genus Philcoxia comprises three species restricted to well lit and low-nutrient soils in the Brazilian Cerrado. The morphological and habitat similarities of Philcoxia to those of some carnivorous plants, along with recent observations of nematodes over its subterranean leaves, prompted the suggestion that the genus is carnivorous. Here we report compelling evidence of carnivory in Philcoxia of the Plantaginaceae, a family in which no carnivorous members are otherwise known. We also document both a unique capturing strategy for carnivorous plants and a case of a plant that traps and digests nematodes with underground adhesive leaves. Our findings illustrate how much can still be discovered about the origin, distribution, and frequency of the carnivorous syndrome in angiosperms and, more generally, about the diversity of nutrient-acquisition mechanisms that have evolved in plants growing in severely nutrient-impoverished environments such as the Brazilian Cerrado, one of the world's 34 biodiversity hotspots.
Resumo:
The conservation of biodiversity in agricultural landscapes depends on information about the ways in which species are affected by the conversion of native habitats into novel anthropogenic environments and the strategies that the species use to persist in these altered ecosystems. Here, we investigate how small mammals occupy the different agroecosystems of an agricultural landscape in the state of Sao Paulo, Brazil. From August 2003 through January 2005, we surveyed small mammals using Sherman traps at 16 sampling sites in each of the four predominant environments of the local agricultural landscape: remnant fragments of semideciduous forest, Eucalyptus plantations, sugarcane plantations, and pastures. With a total effort of 23,040 trap-nights and a capture success of 0.8%, we captured 177 rodents and marsupials belonging to eight species. The assemblage represented by these mammals is essentially composed of generalist species, which are common in degraded areas. Sugarcane plantations had the highest abundance, whereas pastures had the lowest species richness. Our results suggest that the loss of forest species can be related to the loss of native forest. The results also indicate that to improve the conservation value of agricultural landscapes, native forest fragments should be conserved, extensive monocultures should be avoided and agricultural impacts should be mitigated.
Resumo:
The forest-like characteristics of agroforestry systems create a unique opportunity to combine agricultural production with biodiversity conservation in human-modified tropical landscapes. The cacao-growing region in southern Bahia, Brazil, encompasses Atlantic forest remnants and large extensions of agroforests, locally known as cabrucas, and harbors several endemic large mammals. Based on the differences between cabrucas and forests, we hypothesized that: (1) non-native and non-arboreal mammals are more frequent, whereas exclusively arboreal and hunted mammals are less frequent in cabrucas than forests; (2) the two systems differ in mammal assemblage structure, but not in species richness; and (3) mammal assemblage structure is more variable among cabrucas than forests. We used camera-traps to sample mammals in nine pairs of cabruca-forest sites. The high conservation value of agroforests was supported by the presence of species of conservation concern in cabrucas, and similar species richness and composition between forests and cabrucas. Arboreal species were less frequently recorded, however, and a non-native and a terrestrial species adapted to open environments (Cerdocyon thous) were more frequently recorded in cabrucas. Factors that may overestimate the conservation value of cabrucas are: the high proportion of total forest cover in the study landscape, the impoverishment of large mammal fauna in forest, and uncertainty about the long-term maintenance of agroforestry systems. Our results highlight the importance of agroforests and forest remnants for providing connectivity in human-modified tropical forest landscapes, and the importance of controlling hunting and dogs to increase the value of agroforestry mosaics.
Resumo:
Here, we present a method for measuring barbiturates (butalbital, secobarbital, pentobarbital, and phenobarbital) in whole blood samples. To accomplish these measurements, analytes were extracted by means of hollow-fiber liquid-phase microextraction in the three-phase mode. Hollow-fiber pores were filled with decanol, and a solution of sodium hydroxide (pH 13) was introduced into the lumen of the fiber (acceptor phase). The fiber was submersed in the acidified blood sample, and the system was subjected to an ultrasonic bath. After a 5 min extraction, the acceptor phase was withdrawn from the fiber and dried under a nitrogen stream. The residue was reconstituted with ethyl acetate and trimethylanilinium hydroxide. An aliquot of 1.0 mu L of this solution was injected into the gas chromatograph/mass spectrometer, with the derivatization reaction occurring in the hot injector port (flash methylation). The method proved to be simple and rapid, and only a small amount of organic solvent (decanol) was needed for extraction. The detection limit was 0.5 mu g/mL for all the analyzed barbiturates. The calibration curves were linear over the specified range (1.0 to 10.0 mu g/mL). This method was successfully applied to postmortem samples (heart blood and femoral blood) collected from three deceased persons previously exposed to barbiturates.
Resumo:
Background The evolutionary advantages of selective attention are unclear. Since the study of selective attention began, it has been suggested that the nervous system only processes the most relevant stimuli because of its limited capacity [1]. An alternative proposal is that action planning requires the inhibition of irrelevant stimuli, which forces the nervous system to limit its processing [2]. An evolutionary approach might provide additional clues to clarify the role of selective attention. Methods We developed Artificial Life simulations wherein animals were repeatedly presented two objects, "left" and "right", each of which could be "food" or "non-food." The animals' neural networks (multilayer perceptrons) had two input nodes, one for each object, and two output nodes to determine if the animal ate each of the objects. The neural networks also had a variable number of hidden nodes, which determined whether or not it had enough capacity to process both stimuli (Table 1). The evolutionary relevance of the left and the right food objects could also vary depending on how much the animal's fitness was increased when ingesting them (Table 1). We compared sensory processing in animals with or without limited capacity, which evolved in simulations in which the objects had the same or different relevances. Table 1. Nine sets of simulations were performed, varying the values of food objects and the number of hidden nodes in the neural networks. The values of left and right food were swapped during the second half of the simulations. Non-food objects were always worth -3. The evolution of neural networks was simulated by a simple genetic algorithm. Fitness was a function of the number of food and non-food objects each animal ate and the chromosomes determined the node biases and synaptic weights. During each simulation, 10 populations of 20 individuals each evolved in parallel for 20,000 generations, then the relevance of food objects was swapped and the simulation was run again for another 20,000 generations. The neural networks were evaluated by their ability to identify the two objects correctly. The detectability (d') for the left and the right objects was calculated using Signal Detection Theory [3]. Results and conclusion When both stimuli were equally relevant, networks with two hidden nodes only processed one stimulus and ignored the other. With four or eight hidden nodes, they could correctly identify both stimuli. When the stimuli had different relevances, the d' for the most relevant stimulus was higher than the d' for the least relevant stimulus, even when the networks had four or eight hidden nodes. We conclude that selection mechanisms arose in our simulations depending not only on the size of the neuron networks but also on the stimuli's relevance for action.