9 resultados para High dynamic vehicles
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The vertebrate retina has a very high dynamic range. This is due to the concerted action of its diverse cell types. Ganglion cells, which are the output cells of the retina, have to preserve this high dynamic range to convey it to higher brain areas. Experimental evidence shows that the firing response of ganglion cells is strongly correlated with their total dendritic area and only weakly correlated with their dendritic branching complexity. On the other hand, theoretical studies with simple neuron models claim that active and large dendritic trees enhance the dynamic range of single neurons. Theoretical models also claim that electrical coupling between ganglion cells via gap junctions enhances their collective dynamic range. In this work we use morphologically reconstructed multi-compartmental ganglion cell models to perform two studies. In the first study we investigate the relationship between single ganglion cell dynamic range and number of dendritic branches/total dendritic area for both active and passive dendrites. Our results support the claim that large and active dendrites enhance the dynamic range of a single ganglion cell and show that total dendritic area has stronger correlation with dynamic range than with number of dendritic branches. In the second study we investigate the dynamic range of a square array of ganglion cells with passive or active dendritic trees coupled with each other via dendrodendritic gap junctions. Our results suggest that electrical coupling between active dendritic trees enhances the dynamic range of the ganglion cell array in comparison with both the uncoupled case and the coupled case with cells with passive dendrites. The results from our detailed computational modeling studies suggest that the key properties of the ganglion cells that endow them with a large dynamic range are large and active dendritic trees and electrical coupling via gap junctions.
Resumo:
Understanding how magnetic materials respond to rapidly varying magnetic fields, as in dynamic hysteresis loops, constitutes a complex and physically interesting problem. But in order to accomplish a thorough investigation, one must necessarily consider the effects of thermal fluctuations. Albeit being present in all real systems, these are seldom included in numerical studies. The notable exceptions are the Ising systems, which have been extensively studied in the past, but describe only one of the many mechanisms of magnetization reversal known to occur. In this paper we employ the Stochastic Landau-Lifshitz formalism to study high-frequency hysteresis loops of single-domain particles with uniaxial anisotropy at an arbitrary temperature. We show that in certain conditions the magnetic response may become predominantly out-of-phase and the loops may undergo a dynamic symmetry loss. This is found to be a direct consequence of the competing responses due to the thermal fluctuations and the gyroscopic motion of the magnetization. We have also found the magnetic behavior to be exceedingly sensitive to temperature variations, not only within the superparamagnetic-ferromagnetic transition range usually considered, but specially at even lower temperatures, where the bulk of interesting phenomena is seen to take place. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The determination of hydrodynamic coefficients of full scale underwater vehicles using system identification (SI) is an extremely powerful technique. The procedure is based on experimental runs and on the analysis of on-board sensors and thrusters signals. The technique is cost effective and it has high repeatability; however, for open-frame underwater vehicles, it lacks accuracy due to the sensors' noise and the poor modeling of thruster-hull and thruster-thruster interaction effects. In this work, forced oscillation tests were undertaken with a full scale open-frame underwater vehicle. These conducted tests are unique in the sense that there are not many examples in the literature taking advantage of a PMM installation for testing a prototype and; consequently, allowing the comparison between the experimental results and the ones estimated by parameter identification. The Morison's equation inertia and drag coefficients were estimated with two parameter identification methods, that is, the weighted and the ordinary least-squares procedures. It was verified that the in-line force estimated from Morison's equation agrees well with the measured one except in the region around the motion inversion points. On the other hand, the error analysis showed that the ordinary least-squares provided better accuracy and, therefore, was used to evaluate the ratio between inertia and drag forces for a range of Keulegan-Carpenter and Reynolds numbers. It was concluded that, although both experimental and estimation techniques proved to be powerful tools for evaluation of an open-frame underwater vehicle's hydrodynamic coefficients, the research provided a rich amount of reference data for comparison with reduced models as well as for dynamic motion simulation of ROVs. [DOI: 10.1115/1.4004952]
Resumo:
Objective: To evaluate the anatomical and functional renal alterations and the association with post-traumatic arterial hypertension. Methods: The studied population included patients who sustained high grades renal injury (grades III to V) successfully non-operative management after staging by computed tomography over a 16-year period. Beyond the review of medical records, these patients were invited to the following protocol: clinical and laboratory evaluation, abdominal computed tomography, magnetic resonance angiography, DMSA renal scintigraphy, and ambulatory blood pressure monitoring. The hypertensive patients also were submitted to dynamic renal scintigraphy (Tc-99m EC), using captopril stimulation to verify renal vascular etiology. Results: Of the 31 patients, there were thirteen grade III, sixteen grade IV (nine lacerations, and seven vascular lesions), and two grade V injuries. All the patients were asymptomatic and an average follow up post-injury of 6.4 years. None had abnormal BUN or seric creatinine. The percentage of renal volume reduction correlates with the severity as defined by OIS. There was no evidence of renal artery stenosis in Magnetic Resonance angiography (MRA). DMSA scanning demonstrated a decline in percentage of total renal function corresponding to injury severity (42.2 +/- 5.5% for grade III, 35.3 +/- 12.8% for grade IV, 13.5 +/- 19.1 for grade V). Six patients (19.4%) had severe compromised function (< 30%). There was statistically significant difference in the decrease in renal function between parenchymal and vascular causes for grade IV injuries (p < 0.001). The 24-hour ambulatory blood pressure monitoring detected nine patients (29%) with post-traumatic hypertension. All the patients were male, mean 35.6 years, 77.8 % had a familial history of arterial hypertension, 66.7% had grade III renal injury, and average post-injury time was 7.8 years. Seven patients had negative captopril renography. Conclusions: Late results of renal function after conservative treatment of high grades renal injuries are favorable, except for patients with grades IV with vascular injuries and grade V renal injuries. Moreover, arterial hypertension does not correlate with the grade of renal injury or reduction of renal function.
Resumo:
It is well known that control systems are the core of electronic differential systems (EDSs) in electric vehicles (EVs)/hybrid HEVs (HEVs). However, conventional closed-loop control architectures do not completely match the needed ability to reject noises/disturbances, especially regarding the input acceleration signal incoming from the driver's commands, which makes the EDS (in this case) ineffective. Due to this, in this paper, a novel EDS control architecture is proposed to offer a new approach for the traction system that can be used with a great variety of controllers (e. g., classic, artificial intelligence (AI)-based, and modern/robust theory). In addition to this, a modified proportional-integral derivative (PID) controller, an AI-based neuro-fuzzy controller, and a robust optimal H-infinity controller were designed and evaluated to observe and evaluate the versatility of the novel architecture. Kinematic and dynamic models of the vehicle are briefly introduced. Then, simulated and experimental results were presented and discussed. A Hybrid Electric Vehicle in Low Scale (HELVIS)-Sim simulation environment was employed to the preliminary analysis of the proposed EDS architecture. Later, the EDS itself was embedded in a dSpace 1103 high-performance interface board so that real-time control of the rear wheels of the HELVIS platform was successfully achieved.
Resumo:
Rationale: Lymphangioleiomyomatosis (LAM) is characterized by exercise performance impairment. Although airflow limitation is common, no previous studies have evaluated the prevalence and impact of dynamic hyperinflation (DH) in LAM. Objectives: To investigate the dynamic responses during maximal exercise and the prevalence, predictors, and repercussions of DH in LAM. Methods: Forty-two patients with LAM performed symptom-limited incremental cycle exercise and pulmonary functions tests (PFTs) and were compared with 10 age-matched healthy women. Dyspnea intensity, inspiratory capacity, oxygen saturation, and cardiac, metabolic, and respiratory variables were assessed during exercise. Patients with LAM also performed a 6-minute walk test (6MWT). Measurements and Main Results: Patients with LAM had higher baseline dyspnea, poorer quality of life, obstructive pattern, air trapping, and reduced diffusing capacity of carbon monoxide in PFTs. Although they had the same level of regular physical activity, their maximal exercise performance was reduced and was associated with ventilatory limitation, greater desaturation, and dyspnea. The prevalence of DH was high in LAM (55%), even in patients with mild spirometric abnormalities, and was correlated with airflow obstruction, air trapping, and diffusing capacity of carbon monoxide. Compared with the non-DH subgroup, the patients who developed DH had a ventilatory limitation contributing to exercise cessation on cycling and higher desaturation and dyspnea intensity during the 6MWT. Conclusions: Ventilatory limitation and gas exchange impairment are important causes of exercise limitation in LAM. DH is frequent in LAM, even in patients with mild spirometric abnormalities. DH was associated with the severity of disease, higher dyspnea, and lower oxygen saturation. In the 6MWT, desaturation and dyspnea were greater in patients with DH.
Resumo:
This paper presents preliminary results to determine small displacements of a global positioning system (GPS) antenna fastened to a structure using only one L1 GPS receiver. Vibrations, periodic or not, are common in large structures, such as bridges, footbridges, tall buildings, and towers under dynamic loads. The behavior in time and frequency leads to structural analysis studies. The hypothesis of this article is that any large structure that presents vibrations in the centimeter-to-millimeter range can be monitored by phase measurements of a single L1 receiver with a high data rate, as long as the direction of the displacement is pointing to a particular satellite. Within this scenario, the carrier phase will be modulated by antenna displacement. During a period of a few dozen seconds, the relative displacement to the satellite, the satellite clock, and the atmospheric phase delays can be assumed as a polynomial time function. The residuals from a polynomial adjustment contain the phase modulation owing to small displacements, random noise, receiver clock short time instabilities, and multipath. The results showed that it is possible to detect displacements of centimeters in the phase data of a single satellite and millimeters in the difference between the phases of two satellites. After applying a periodic nonsinusoidal displacement of 10 m to the antenna, it is clearly recovered in the difference of the residuals. The time domain spectrum obtained by the fast Fourier transform (FFT) exhibited a defined peak of the third harmonic much more than the random noise using the proposed third-degree polynomial model. DOI: 10.1061/(ASCE)SU.1943-5428.0000070. (C) 2012 American Society of Civil Engineers.
Resumo:
Most of the works published on hydrodynamic parameter identification of open-frame underwater vehicles focus their attention almost exclusively on good coherence between simulated and measured responses, giving less importance to the determination of “actual values” for hydrodynamic parameters. To gain insight into hydrodynamic parameter experimental identification of open-frame underwater vehicles, an experimental identification procedure is proposed here to determine parameters of uncoupled and coupled models. The identification procedure includes: (i) a prior estimation of actual values of the forces/torques applied to the vehicle, (ii) identification of drag parameters from constant velocity tests and (iii) identification of inertia and coupling parameters from oscillatory tests; at this stage, the estimated values of drag parameter obtained in item (ii) are used. The procedure proposed here was used to identify the hydrodynamic parameters of LAURS—an unmanned underwater vehicle developed at the University of São Paulo. The thruster–thruster and thruster–hull interactions and the advance velocity of the vehicle are shown to have a strong impact on the efficiency of thrusters appended to open-frame underwater vehicles, especially for high advance velocities. Results of tests with excitation in 1-DOF and 3-DOF are reported and discussed, showing the feasibility of the developed procedure.
Resumo:
In this paper, nighttime light data are suggested as a proxy for spatial distribution of vehicles running in urban and nearby areas. Nighttime lights focus on human activities, in contrast to traditional Earth observing systems that focus on natural systems. It is the human activity being visible in the form of brightness of nocturnal lights. Two available nighttime lights dataset were used in this work. The first one was provided by the U.S. Air Force Defense Meteorological Satellite Program (DMSP) Operational Linescan System (OLS), henceforth, DMSO-OLS. The second one is the NASA-NOAA Suomi National Polar-orbiting Polar-orbiting Partnership (NPP) satellite, henceforth, Suomi-NPP. To validate the new proposed methodology, hundreds of urban areas of South America were analyzed in a high degree of resolution. The results of this study showed that night-time lights are very well correlated with vehicle fleet, population, and impervious surfaces but with strong spatial variability. The results of this study suggest a better understanding of the human activities in the context of a vehicular-based city conception.