12 resultados para Hierarchical Clustering Model
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Biogeography has been difficult to apply as a methodological approach because organismic biology is incomplete at levels where the process of formulating comparisons and analogies is complex. The study of insect biogeography became necessary because insects possess numerous evolutionary traits and play an important role as pollinators. Among insects, the euglossine bees, or orchid bees, attract interest because the study of their biology allows us to explain important steps in the evolution of social behavior and many other adaptive tradeoffs. We analyzed the distribution of morphological characteristics in Colombian orchid bees from an ecological perspective. The aim of this study was to observe the distribution of these attributes on a regional basis. Data corresponding to Colombian euglossine species were ordered with a correspondence analysis and with subsequent hierarchical clustering. Later, and based on community proprieties, we compared the resulting hierarchical model with the collection localities to seek to identify a biogeographic classification pattern. From this analysis, we derived a model that classifies the territory of Colombia into 11 biogeographic units or natural clusters. Ecological assumptions in concordance with the derived classification levels suggest that species characteristics associated with flight performance, nectar uptake, and social behavior are the factors that served to produce the current geographical structure.
Resumo:
Background and Aim: The identification of gastric carcinomas (GC) has traditionally been based on histomorphology. Recently, DNA microarrays have successfully been used to identify tumors through clustering of the expression profiles. Random forest clustering is widely used for tissue microarrays and other immunohistochemical data, because it handles highly-skewed tumor marker expressions well, and weighs the contribution of each marker according to its relatedness with other tumor markers. In the present study, we e identified biologically- and clinically-meaningful groups of GC by hierarchical clustering analysis of immunohistochemical protein expression. Methods: We selected 28 proteins (p16, p27, p21, cyclin D1, cyclin A, cyclin B1, pRb, p53, c-met, c-erbB-2, vascular endothelial growth factor, transforming growth factor [TGF]-beta I, TGF-beta II, MutS homolog-2, bcl-2, bax, bak, bcl-x, adenomatous polyposis coli, clathrin, E-cadherin, beta-catenin, mucin (MUC) 1, MUC2, MUC5AC, MUC6, matrix metalloproteinase [ MMP]-2, and MMP-9) to be investigated by immunohistochemistry in 482 GC. The analyses of the data were done using a random forest-clustering method. Results: Proteins related to cell cycle, growth factor, cell motility, cell adhesion, apoptosis, and matrix remodeling were highly expressed in GC. We identified protein expressions associated with poor survival in diffuse-type GC. Conclusions: Based on the expression analysis of 28 proteins, we identified two groups of GC that could not be explained by any clinicopathological variables, and a subgroup of long-surviving diffuse-type GC patients with a distinct molecular profile. These results provide not only a new molecular basis for understanding the biological properties of GC, but also better prediction of survival than the classic pathological grouping.
Resumo:
Alzheimer's disease (AD) is the most common cause of dementia in the human population, characterized by a spectrum of neuropathological abnormalities that results in memory impairment and loss of other cognitive processes as well as the presence of non-cognitive symptoms. Transcriptomic analyses provide an important approach to elucidating the pathogenesis of complex diseases like AD, helping to figure out both pre-clinical markers to identify susceptible patients and the early pathogenic mechanisms to serve as therapeutic targets. This study provides the gene expression profile of postmortem brain tissue from subjects with clinic-pathological AD (Braak IV, V, or V and CERAD B or C; and CDR >= 1), preclinical AD (Braak IV, V, or VI and CERAD B or C; and CDR = 0), and healthy older individuals (Braak <= II and CERAD 0 or A; and CDR = 0) in order to establish genes related to both AD neuropathology and clinical emergence of dementia. Based on differential gene expression, hierarchical clustering and network analysis, genes involved in energy metabolism, oxidative stress, DNA damage/repair, senescence, and transcriptional regulation were implicated with the neuropathology of AD; a transcriptional profile related to clinical manifestation of AD could not be detected with reliability using differential gene expression analysis, although genes involved in synaptic plasticity, and cell cycle seems to have a role revealed by gene classifier. In conclusion, the present data suggest gene expression profile changes secondary to the development of AD-related pathology and some genes that appear to be related to the clinical manifestation of dementia in subjects with significant AD pathology, making necessary further investigations to better understand these transcriptional findings on the pathogenesis and clinical emergence of AD.
Resumo:
Abstract Background Oral squamous cell carcinoma (OSCC) is a frequent neoplasm, which is usually aggressive and has unpredictable biological behavior and unfavorable prognosis. The comprehension of the molecular basis of this variability should lead to the development of targeted therapies as well as to improvements in specificity and sensitivity of diagnosis. Results Samples of primary OSCCs and their corresponding surgical margins were obtained from male patients during surgery and their gene expression profiles were screened using whole-genome microarray technology. Hierarchical clustering and Principal Components Analysis were used for data visualization and One-way Analysis of Variance was used to identify differentially expressed genes. Samples clustered mostly according to disease subsite, suggesting molecular heterogeneity within tumor stages. In order to corroborate our results, two publicly available datasets of microarray experiments were assessed. We found significant molecular differences between OSCC anatomic subsites concerning groups of genes presently or potentially important for drug development, including mRNA processing, cytoskeleton organization and biogenesis, metabolic process, cell cycle and apoptosis. Conclusion Our results corroborate literature data on molecular heterogeneity of OSCCs. Differences between disease subsites and among samples belonging to the same TNM class highlight the importance of gene expression-based classification and challenge the development of targeted therapies.
Resumo:
Abstract Background Regardless the regulatory function of microRNAs (miRNA), their differential expression pattern has been used to define miRNA signatures and to disclose disease biomarkers. To address the question of whether patients presenting the different types of diabetes mellitus could be distinguished on the basis of their miRNA and mRNA expression profiling, we obtained peripheral blood mononuclear cell (PBMC) RNAs from 7 type 1 (T1D), 7 type 2 (T2D), and 6 gestational diabetes (GDM) patients, which were hybridized to Agilent miRNA and mRNA microarrays. Data quantification and quality control were obtained using the Feature Extraction software, and data distribution was normalized using quantile function implemented in the Aroma light package. Differentially expressed miRNAs/mRNAs were identified using Rank products, comparing T1DxGDM, T2DxGDM and T1DxT2D. Hierarchical clustering was performed using the average linkage criterion with Pearson uncentered distance as metrics. Results The use of the same microarrays platform permitted the identification of sets of shared or specific miRNAs/mRNA interaction for each type of diabetes. Nine miRNAs (hsa-miR-126, hsa-miR-1307, hsa-miR-142-3p, hsa-miR-142-5p, hsa-miR-144, hsa-miR-199a-5p, hsa-miR-27a, hsa-miR-29b, and hsa-miR-342-3p) were shared among T1D, T2D and GDM, and additional specific miRNAs were identified for T1D (20 miRNAs), T2D (14) and GDM (19) patients. ROC curves allowed the identification of specific and relevant (greater AUC values) miRNAs for each type of diabetes, including: i) hsa-miR-1274a, hsa-miR-1274b and hsa-let-7f for T1D; ii) hsa-miR-222, hsa-miR-30e and hsa-miR-140-3p for T2D, and iii) hsa-miR-181a and hsa-miR-1268 for GDM. Many of these miRNAs targeted mRNAs associated with diabetes pathogenesis. Conclusions These results indicate that PBMC can be used as reporter cells to characterize the miRNA expression profiling disclosed by the different diabetes mellitus manifestations. Shared miRNAs may characterize diabetes as a metabolic and inflammatory disorder, whereas specific miRNAs may represent biological markers for each type of diabetes, deserving further attention.
Resumo:
Item response theory (IRT) comprises a set of statistical models which are useful in many fields, especially when there is an interest in studying latent variables (or latent traits). Usually such latent traits are assumed to be random variables and a convenient distribution is assigned to them. A very common choice for such a distribution has been the standard normal. Recently, Azevedo et al. [Bayesian inference for a skew-normal IRT model under the centred parameterization, Comput. Stat. Data Anal. 55 (2011), pp. 353-365] proposed a skew-normal distribution under the centred parameterization (SNCP) as had been studied in [R. B. Arellano-Valle and A. Azzalini, The centred parametrization for the multivariate skew-normal distribution, J. Multivariate Anal. 99(7) (2008), pp. 1362-1382], to model the latent trait distribution. This approach allows one to represent any asymmetric behaviour concerning the latent trait distribution. Also, they developed a Metropolis-Hastings within the Gibbs sampling (MHWGS) algorithm based on the density of the SNCP. They showed that the algorithm recovers all parameters properly. Their results indicated that, in the presence of asymmetry, the proposed model and the estimation algorithm perform better than the usual model and estimation methods. Our main goal in this paper is to propose another type of MHWGS algorithm based on a stochastic representation (hierarchical structure) of the SNCP studied in [N. Henze, A probabilistic representation of the skew-normal distribution, Scand. J. Statist. 13 (1986), pp. 271-275]. Our algorithm has only one Metropolis-Hastings step, in opposition to the algorithm developed by Azevedo et al., which has two such steps. This not only makes the implementation easier but also reduces the number of proposal densities to be used, which can be a problem in the implementation of MHWGS algorithms, as can be seen in [R.J. Patz and B.W. Junker, A straightforward approach to Markov Chain Monte Carlo methods for item response models, J. Educ. Behav. Stat. 24(2) (1999), pp. 146-178; R. J. Patz and B. W. Junker, The applications and extensions of MCMC in IRT: Multiple item types, missing data, and rated responses, J. Educ. Behav. Stat. 24(4) (1999), pp. 342-366; A. Gelman, G.O. Roberts, and W.R. Gilks, Efficient Metropolis jumping rules, Bayesian Stat. 5 (1996), pp. 599-607]. Moreover, we consider a modified beta prior (which generalizes the one considered in [3]) and a Jeffreys prior for the asymmetry parameter. Furthermore, we study the sensitivity of such priors as well as the use of different kernel densities for this parameter. Finally, we assess the impact of the number of examinees, number of items and the asymmetry level on the parameter recovery. Results of the simulation study indicated that our approach performed equally as well as that in [3], in terms of parameter recovery, mainly using the Jeffreys prior. Also, they indicated that the asymmetry level has the highest impact on parameter recovery, even though it is relatively small. A real data analysis is considered jointly with the development of model fitting assessment tools. The results are compared with the ones obtained by Azevedo et al. The results indicate that using the hierarchical approach allows us to implement MCMC algorithms more easily, it facilitates diagnosis of the convergence and also it can be very useful to fit more complex skew IRT models.
Resumo:
Objective: To assess the risk factors for delayed diagnosis of uterine cervical lesions. Materials and Methods: This is a case-control study that recruited 178 women at 2 Brazilian hospitals. The cases (n = 74) were composed of women with a late diagnosis of a lesion in the uterine cervix (invasive carcinoma in any stage). The controls (n = 104) were composed of women with cervical lesions diagnosed early on (low-or high-grade intraepithelial lesions). The analysis was performed by means of logistic regression model using a hierarchical model. The socioeconomic and demographic variables were included at level I (distal). Level II (intermediate) included the personal and family antecedents and knowledge about the Papanicolaou test and human papillomavirus. Level III (proximal) encompassed the variables relating to individuals' care for their own health, gynecologic symptoms, and variables relating to access to the health care system. Results: The risk factors for late diagnosis of uterine cervical lesions were age older than 40 years (odds ratio [OR] = 10.4; 95% confidence interval [CI], 2.3-48.4), not knowing the difference between the Papanicolaou test and gynecological pelvic examinations (OR, = 2.5; 95% CI, 1.3-4.9), not thinking that the Papanicolaou test was important (odds ratio [OR], 4.2; 95% CI, 1.3-13.4), and abnormal vaginal bleeding (OR, 15.0; 95% CI, 6.5-35.0). Previous treatment for sexually transmissible disease was a protective factor (OR, 0.3; 95% CI, 0.1-0.8) for delayed diagnosis. Conclusions: Deficiencies in cervical cancer prevention programs in developing countries are not simply a matter of better provision and coverage of Papanicolaou tests. The misconception about the Papanicolaou test is a serious educational problem, as demonstrated by the present study.
Resumo:
Spin systems in the presence of disorder are described by two sets of degrees of freedom, associated with orientational (spin) and disorder variables, which may be characterized by two distinct relaxation times. Disordered spin models have been mostly investigated in the quenched regime, which is the usual situation in solid state physics, and in which the relaxation time of the disorder variables is much larger than the typical measurement times. In this quenched regime, disorder variables are fixed, and only the orientational variables are duly thermalized. Recent studies in the context of lattice statistical models for the phase diagrams of nematic liquid-crystalline systems have stimulated the interest of going beyond the quenched regime. The phase diagrams predicted by these calculations for a simple Maier-Saupe model turn out to be qualitative different from the quenched case if the two sets of degrees of freedom are allowed to reach thermal equilibrium during the experimental time, which is known as the fully annealed regime. In this work, we develop a transfer matrix formalism to investigate annealed disordered Ising models on two hierarchical structures, the diamond hierarchical lattice (DHL) and the Apollonian network (AN). The calculations follow the same steps used for the analysis of simple uniform systems, which amounts to deriving proper recurrence maps for the thermodynamic and magnetic variables in terms of the generations of the construction of the hierarchical structures. In this context, we may consider different kinds of disorder, and different types of ferromagnetic and anti-ferromagnetic interactions. In the present work, we analyze the effects of dilution, which are produced by the removal of some magnetic ions. The system is treated in a “grand canonical" ensemble. The introduction of two extra fields, related to the concentration of two different types of particles, leads to higher-rank transfer matrices as compared with the formalism for the usual uniform models. Preliminary calculations on a DHL indicate that there is a phase transition for a wide range of dilution concentrations. Ising spin systems on the AN are known to be ferromagnetically ordered at all temperatures; in the presence of dilution, however, there are indications of a disordered (paramagnetic) phase at low concentrations of magnetic ions.
Resumo:
The mechanisms responsible for containing activity in systems represented by networks are crucial in various phenomena, for example, in diseases such as epilepsy that affect the neuronal networks and for information dissemination in social networks. The first models to account for contained activity included triggering and inhibition processes, but they cannot be applied to social networks where inhibition is clearly absent. A recent model showed that contained activity can be achieved with no need of inhibition processes provided that the network is subdivided into modules (communities). In this paper, we introduce a new concept inspired in the Hebbian theory, through which containment of activity is achieved by incorporating a dynamics based on a decaying activity in a random walk mechanism preferential to the node activity. Upon selecting the decay coefficient within a proper range, we observed sustained activity in all the networks tested, namely, random, Barabasi-Albert and geographical networks. The generality of this finding was confirmed by showing that modularity is no longer needed if the dynamics based on the integrate-and-fire dynamics incorporated the decay factor. Taken together, these results provide a proof of principle that persistent, restrained network activation might occur in the absence of any particular topological structure. This may be the reason why neuronal activity does not spread out to the entire neuronal network, even when no special topological organization exists.
Resumo:
In this paper, we propose a random intercept Poisson model in which the random effect is assumed to follow a generalized log-gamma (GLG) distribution. This random effect accommodates (or captures) the overdispersion in the counts and induces within-cluster correlation. We derive the first two moments for the marginal distribution as well as the intraclass correlation. Even though numerical integration methods are, in general, required for deriving the marginal models, we obtain the multivariate negative binomial model from a particular parameter setting of the hierarchical model. An iterative process is derived for obtaining the maximum likelihood estimates for the parameters in the multivariate negative binomial model. Residual analysis is proposed and two applications with real data are given for illustration. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Multivariate analyses of UV-Vis spectral data from cachaca wood extracts provide a simple and robust model to classify aged Brazilian cachacas according to the wood species used in the maturation barrels. The model is based on inspection of 93 extracts of oak and different Brazilian wood species by a non-aged cachaca used as an extraction solvent. Application of PCA (Principal Components Analysis) and HCA (Hierarchical Cluster Analysis) leads to identification of 6 clusters of cachaca wood extracts (amburana, amendoim, balsamo, castanheira, jatoba, and oak). LDA (Linear Discriminant Analysis) affords classification of 10 different wood species used in the cachaca extracts (amburana, amendoim, balsamo, cabreuva-parda, canela-sassafras, castanheira, jatoba, jequitiba-rosa, louro-canela, and oak) with an accuracy ranging from 80% (amendoim and castanheira) to 100% (balsamo and jequitiba-rosa). The methodology provides a low-cost alternative to methods based on liquid chromatography and mass spectrometry to classify cachacas aged in barrels that are composed of different wood species.
Resumo:
Abstract Background To understand the molecular mechanisms underlying important biological processes, a detailed description of the gene products networks involved is required. In order to define and understand such molecular networks, some statistical methods are proposed in the literature to estimate gene regulatory networks from time-series microarray data. However, several problems still need to be overcome. Firstly, information flow need to be inferred, in addition to the correlation between genes. Secondly, we usually try to identify large networks from a large number of genes (parameters) originating from a smaller number of microarray experiments (samples). Due to this situation, which is rather frequent in Bioinformatics, it is difficult to perform statistical tests using methods that model large gene-gene networks. In addition, most of the models are based on dimension reduction using clustering techniques, therefore, the resulting network is not a gene-gene network but a module-module network. Here, we present the Sparse Vector Autoregressive model as a solution to these problems. Results We have applied the Sparse Vector Autoregressive model to estimate gene regulatory networks based on gene expression profiles obtained from time-series microarray experiments. Through extensive simulations, by applying the SVAR method to artificial regulatory networks, we show that SVAR can infer true positive edges even under conditions in which the number of samples is smaller than the number of genes. Moreover, it is possible to control for false positives, a significant advantage when compared to other methods described in the literature, which are based on ranks or score functions. By applying SVAR to actual HeLa cell cycle gene expression data, we were able to identify well known transcription factor targets. Conclusion The proposed SVAR method is able to model gene regulatory networks in frequent situations in which the number of samples is lower than the number of genes, making it possible to naturally infer partial Granger causalities without any a priori information. In addition, we present a statistical test to control the false discovery rate, which was not previously possible using other gene regulatory network models.