2 resultados para Heaviside cut function

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background The paucity of studies regarding cognitive function in patients with chronic pain, and growing evidence regarding the cognitive effects of pain and opioids on cognitive function prompted us to assess cognition via neuropsychological measurement in patients with chronic non-cancer pain treated with opioids. Methods In this cross-sectional study, 49 patients were assessed by Continuous Reaction Time, Finger Tapping, Digit Span, Trail Making Test-B and Mini-mental State Examination tests. Linear regressions were applied. Results Patients scored poorly in the Trail Making Test-B (mean?=?107.6?s, SD?=?61.0, cut-off?=?91?s); and adequately on all other tests. Several associations among independent variables and cognitive tests were observed. In the multiple regression analyses, the variables associated with statistically significant poor cognitive performance were female sex, higher age, lower annual income, lower schooling, anxiety, depression, tiredness, lower opioid dose, and more than 5?h of sleep the night before assessment (P?<?0.05). Conclusions Patients with chronic pain may have cognitive dysfunction related to some reversible factors, which can be optimized by therapeutic interventions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

A deep theoretical analysis of the graph cut image segmentation framework presented in this paper simultaneously translates into important contributions in several directions. The most important practical contribution of this work is a full theoretical description, and implementation, of a novel powerful segmentation algorithm, GC(max). The output of GC(max) coincides with a version of a segmentation algorithm known as Iterative Relative Fuzzy Connectedness, IRFC. However, GC(max) is considerably faster than the classic IRFC algorithm, which we prove theoretically and show experimentally. Specifically, we prove that, in the worst case scenario, the GC(max) algorithm runs in linear time with respect to the variable M=|C|+|Z|, where |C| is the image scene size and |Z| is the size of the allowable range, Z, of the associated weight/affinity function. For most implementations, Z is identical to the set of allowable image intensity values, and its size can be treated as small with respect to |C|, meaning that O(M)=O(|C|). In such a situation, GC(max) runs in linear time with respect to the image size |C|. We show that the output of GC(max) constitutes a solution of a graph cut energy minimization problem, in which the energy is defined as the a"" (a) norm ayenF (P) ayen(a) of the map F (P) that associates, with every element e from the boundary of an object P, its weight w(e). This formulation brings IRFC algorithms to the realm of the graph cut energy minimizers, with energy functions ayenF (P) ayen (q) for qa[1,a]. Of these, the best known minimization problem is for the energy ayenF (P) ayen(1), which is solved by the classic min-cut/max-flow algorithm, referred to often as the Graph Cut algorithm. We notice that a minimization problem for ayenF (P) ayen (q) , qa[1,a), is identical to that for ayenF (P) ayen(1), when the original weight function w is replaced by w (q) . Thus, any algorithm GC(sum) solving the ayenF (P) ayen(1) minimization problem, solves also one for ayenF (P) ayen (q) with qa[1,a), so just two algorithms, GC(sum) and GC(max), are enough to solve all ayenF (P) ayen (q) -minimization problems. We also show that, for any fixed weight assignment, the solutions of the ayenF (P) ayen (q) -minimization problems converge to a solution of the ayenF (P) ayen(a)-minimization problem (ayenF (P) ayen(a)=lim (q -> a)ayenF (P) ayen (q) is not enough to deduce that). An experimental comparison of the performance of GC(max) and GC(sum) algorithms is included. This concentrates on comparing the actual (as opposed to provable worst scenario) algorithms' running time, as well as the influence of the choice of the seeds on the output.