6 resultados para Heater, Chuck
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Xanthomonas axonopodis pv. citri, the bacterium responsible for citrus canker, uses effector proteins secreted by a type III protein secretion system to colonize its hosts. Among the putative effector proteins identified for this bacterium, we focused on the analysis of the roles of AvrXacE1, AvrXacE2 and Xac3090 in pathogenicity and their interactions with host plant proteins. Bacterial deletion mutants in avrXacE1, avrXacE2 and xac3090 were constructed and evaluated in pathogenicity assays. The avrXacE1 and avrXacE2 mutants presented lesions with larger necrotic areas relative to the wild-type strain when infiltrated in citrus leaves. Yeast two-hybrid studies were used to identify several plant proteins likely to interact with AvrXacE1, AvrXacE2 and Xac3090. We also assessed the localization of these effector proteins fused to green fluorescent protein in the plant cell, and observed that they co-localized to the subcellular spaces in which the plant proteins with which they interacted were predicted to be confined. Our results suggest that, although AvrXacE1 localizes to the plant cell nucleus, where it interacts with transcription factors and DNA-binding proteins, AvrXacE2 appears to be involved in lesion-stimulating disease 1-mediated cell death, and Xac3090 is directed to the chloroplast where its function remains to be clarified.
Resumo:
Cathepsin L-like proteinases (CAL) are major digestive proteinases in the beetle Tenebrio molitor. Procathepsin Ls 2 (pCAL2) and 3 (pCAL3) were expressed as recombinant proteins in Escherichia coil, purified and activated under acidic conditions. Immunoblot analyses of different T. molitor larval tissues demonstrated that a polyclonal antibody to pCAL3 recognized pCAL3 and cathepsin L 3 (CAD) only in the anterior two-thirds of midgut tissue and midgut luminal contents of T. molitor larvae. Furthermore, immunocytolocalization data indicated that pCAL3 occurs in secretory vesicles and microvilli in anterior midgut Therefore CAL3, like cathepsin L 2 (CAL2), is a digestive enzyme secreted by T. molitor anterior midgut CAD hydrolyses Z-FR-MCA and Z-RR-MCA (typical cathepsin substrates), whereas CAL2 hydrolyses only Z-FR-MCA. Active site mutants (pCAL2C25S and pCAL3C265) were constructed by replacing the catalytic cysteine with serine to prevent autocatalytic processing. Recombinant pCAL2 and pCAL3 mutants (pCAL2C25S and pCAL3C26S) were prepared, crystallized and their 3D structures determined at 1.85 and 2.1 angstrom, respectively. While the overall structure of these enzymes is similar to other members of the papain superfamily, structural differences in the S2 subsite explain their substrate specificities. The data also supported models for CAL trafficking to lysosomes and to secretory vesicles to be discharged into midgut contents. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
RpfG is a member of a class of wide spread bacterial two-component regulators with an HD-GYP cyclic di-GMP phosphodiesterase domain. In the plant pathogen Xanthomonas campestris, RpfG together with the sensor kinase RpfC regulates multiple factors as a response to the cell-to-cell Diffusible Signalling Factor (DSF). A dynamic physical interaction of RpfG with two diguanylate cyclase (GGDEF) domain proteins controls motility. Here we show that, contrary to expectation, regulation of motility by the GGDEF domain proteins does not depend upon their cyclic di-GMP synthetic activity. Furthermore we show that the complex of RpfG and GGDEF domain proteins recruits a specific PilZ domain adaptor protein, and this complex then interacts with the pilus motor proteins PilU and PiIT. The results support a model in which DSF signalling influences motility through the highly regulated dynamic interaction of proteins that affect pilus action. A specific motif that we identify to be required for HD-GYP domain interaction is conserved in a number of GGDEF domain proteins, suggesting that regulation via interdomain interactions is of broad relevance.
Resumo:
LipL32 is the most abundant outer membrane protein from pathogenic Leptospira and has been shown to bind extracellular matrix (ECM) proteins as well as Ca2+. Recent crystal structures have been obtained for the protein in the apo-and Ca2+-bound forms. In this work, we produced three LipL32 mutants (D163-168A, Q67A, and S247A) and evaluated their ability to interact with Ca2+ and with ECM glycoproteins and human plasminogen. The D163-168A mutant modifies aspartate residues involved in Ca2+ binding, whereas the other two modify residues in a cavity on the other side of the protein structure. Loss of calcium binding in the D163-D168A mutant was confirmed using intrinsic tryptophan fluorescence, circular dichroism, and thermal denaturation whereas the Q67A and S247A mutants presented the same Ca2+ affinity as the wild-type protein. We then evaluated if Ca2+ binding to LipL32 would be crucial for its interaction with collagen type IV and plasma proteins fibronectin and plasminogen. Surprisingly, the wild-type protein and all three mutants, including the D163-168A variant, bound to these ECM proteins with very similar affinities, both in the presence and absence of Ca2+ ions. In conclusion, calcium binding to LipL32 may be important to stabilize the protein, but is not necessary to mediate interaction with host extracellular matrix proteins.
Resumo:
Background The α-proteobacterium Caulobacter crescentus inhabits low-nutrient environments and can tolerate certain levels of heavy metals in these sites. It has been reported that C. crescentus responds to exposure to various heavy metals by altering the expression of a large number of genes. Results In this work, we show that the ECF sigma factor σF is one of the regulatory proteins involved in the control of the transcriptional response to chromium and cadmium. Microarray experiments indicate that σF controls eight genes during chromium stress, most of which were previously described as induced by heavy metals. Surprisingly, σF itself is not strongly auto-regulated under metal stress conditions. Interestingly, σF-dependent genes are not induced in the presence of agents that generate reactive oxygen species. Promoter analyses revealed that a conserved σF-dependent sequence is located upstream of all genes of the σF regulon. In addition, we show that the second gene in the sigF operon acts as a negative regulator of σF function, and the encoded protein has been named NrsF (Negative regulator of sigma F). Substitution of two conserved cysteine residues (C131 and C181) in NrsF affects its ability to maintain the expression of σF-dependent genes at basal levels. Furthermore, we show that σF is released into the cytoplasm during chromium stress and in cells carrying point mutations in both conserved cysteines of the protein NrsF. Conclusion A possible mechanism for induction of the σF-dependent genes by chromium and cadmium is the inactivation of the putative anti-sigma factor NrsF, leading to the release of σF to bind RNA polymerase core and drive transcription of its regulon.
Resumo:
Signal transduction pathways mediated by cyclic-bis(3'→5')-dimeric GMP (c-di-GMP) control many important and complex behaviors in bacteria. C-di-GMP is synthesized through the action of GGDEF domains that possess diguanylate cyclase activity and is degraded by EAL or HD-GYP domains with phosphodiesterase activity. There is mounting evidence that some important c-di-GMP-mediated pathways require protein-protein interactions between members of the GGDEF, EAL, HD-GYP and PilZ protein domain families. For example, interactions have been observed between PilZ and the EAL domain from FimX of Xanthomonas citri (Xac). FimX and PilZ are involved in the regulation of type IV pilus biogenesis via interactions of the latter with the hexameric PilB ATPase associated with the bacterial inner membrane. Here, we present the crystal structure of the ternary complex made up of PilZ, the FimX EAL domain (FimXEAL) and c-di-GMP. PilZ interacts principally with the lobe region and the N-terminal linker helix of the FimXEAL. These interactions involve a hydrophobic surface made up of amino acids conserved in a non-canonical family of PilZ domains that lack intrinsic c-di-GMP binding ability and strand complementation that joins β-sheets from both proteins. Interestingly, the c-di-GMP binds to isolated FimXEAL and to the PilZ-FimXEAL complex in a novel conformation encountered in c-di-GMP-protein complexes in which one of the two glycosidic bonds is in a rare syn conformation while the other adopts the more common anti conformation. The structure points to a means by which c-di-GMP and PilZ binding could be coupled to FimX and PilB conformational states