9 resultados para Heat diffusion systems
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
A poorly understood phenomenon seen in complex systems is diffusion characterized by Hurst exponent H approximate to 1/2 but with non-Gaussian statistics. Motivated by such empirical findings, we report an exact analytical solution for a non-Markovian random walk model that gives rise to weakly anomalous diffusion with H = 1/2 but with a non-Gaussian propagator.
Resumo:
This paper reports an experimental method to estimate the convective heat transfer of cutting fluids in a laminar flow regime applied on a thin steel plate. The heat source provided by the metal cutting was simulated by electrical heating of the plate. Three different cooling conditions were evaluated: a dry cooling system, a flooded cooling system and a minimum quantity of lubrication cooling system, as well as two different cutting fluids for the last two systems. The results showed considerable enhancement of convective heat transfer using the flooded system. For the dry and minimum quantity of lubrication systems, the heat conduction inside the body was much faster than the heat convection away from its surface. In addition, using the Biot number, the possible models were analyzed for conduction heat problems for each experimental condition tested.
Resumo:
In the present work we revisit the size data of CdS microcrystals previously collected in the glassy matrix of Germanium oxide. The CdS clusters analyzed using electron microscopy images have shown a wurtzite structure. The mean average radius, dispersion and volume evaluated from the histograms showed good agreement for t(1/3), t(2/3) and t laws, respectively. We observed that the amount of microcrystals remains constant throughout the heat treatment process, as well as that the radii distribution has a lower limit and increases with heat treatment. The distribution of radii follows a distribution similar to the Lifshitz-Slyozov-Wagner distribution limited in the origin. Discussions led to the conclusion that the growth of CdS is a process that occurs after the fluctuating nucleation and coalescence phases. We then analyze the growth process, assuming that the evaporation is overcome by the precipitation rate, stabilizing all clusters with respect to dissolution back into the matrix. The problem was simplified neglecting anisotropy and the assuming a spherical shape for clusters and particles. The low interface tension was described in terms of an empirical potential barrier in the surface of the cluster. The growth dynamics developed considering that the number of clusters remains constant, and that the minimum size of these clusters grow with time, as the first order approximation showed a good agreement with the flaw. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present a stochastic approach to nonequilibrium thermodynamics based on the expression of the entropy production rate advanced by Schnakenberg for systems described by a master equation. From the microscopic Schnakenberg expression we get the macroscopic bilinear form for the entropy production rate in terms of fluxes and forces. This is performed by placing the system in contact with two reservoirs with distinct sets of thermodynamic fields and by assuming an appropriate form for the transition rate. The approach is applied to an interacting lattice gas model in contact with two heat and particle reservoirs. On a square lattice, a continuous symmetry breaking phase transition takes place such that at the nonequilibrium ordered phase a heat flow sets in even when the temperatures of the reservoirs are the same. The entropy production rate is found to have a singularity at the critical point of the linear-logarithm type.
Resumo:
Background: The study of myofiber reorganization in the remote zone after myocardial infarction has been performed in 2D. Microstructural reorganization in remodeled hearts, however, can only be fully appreciated by considering myofibers as continuous 3D entities. The aim of this study was therefore to develop a technique for quantitative 3D diffusion CMR tractography of the heart, and to apply this method to quantify fiber architecture in the remote zone of remodeled hearts. Methods: Diffusion Tensor CMR of normal human, sheep, and rat hearts, as well as infarcted sheep hearts was performed ex vivo. Fiber tracts were generated with a fourth-order Runge-Kutta integration technique and classified statistically by the median, mean, maximum, or minimum helix angle (HA) along the tract. An index of tract coherence was derived from the relationship between these HA statistics. Histological validation was performed using phase-contrast microscopy. Results: In normal hearts, the subendocardial and subepicardial myofibers had a positive and negative HA, respectively, forming a symmetric distribution around the midmyocardium. However, in the remote zone of the infarcted hearts, a significant positive shift in HA was observed. The ratio between negative and positive HA variance was reduced from 0.96 +/- 0.16 in normal hearts to 0.22 +/- 0.08 in the remote zone of the remodeled hearts (p<0.05). This was confirmed histologically by the reduction of HA in the subepicardium from -52.03 degrees +/- 2.94 degrees in normal hearts to -37.48 degrees +/- 4.05 degrees in the remote zone of the remodeled hearts (p < 0.05). Conclusions: A significant reorganization of the 3D fiber continuum is observed in the remote zone of remodeled hearts. The positive (rightward) shift in HA in the remote zone is greatest in the subepicardium, but involves all layers of the myocardium. Tractography-based quantification, performed here for the first time in remodeled hearts, may provide a framework for assessing regional changes in the left ventricle following infarction.
Resumo:
Pregnant sows confinement systems were created in order to maximize the productivity, however there are problems concerning the animal welfare. The aim of this research was to evaluate pregnant sows in outdoors and in confinement systems in relation to the thermal environment and physiological animal responses. The experiment was conducted in a commercial farm in Monte Mor city, Sao Paulo, Brazil. The physiological evaluation was performed by recording physiological variables, such as respiratory frequency and skin temperature. Furthermore, variables like dry bulb temperature, wet bulb temperature, and black globe temperature were also evaluated to characterize the ambient by means of enthalpy and black globe humidity index. In each treatment six animals were evaluated. The experimental design was completely randomized in a split-plot version whose averages were compared by the Tukey test. The findings of the experiment revealed higher values for all the bioclimatic variables in the confined treatment. Hence, the outdoor system provided better thermal conditioning for pigs, resulting in a lower heat stress.
Resumo:
The ability to entrap drugs within vehicles and subsequently release them has led to new treatments for a number of diseases. Based on an associative phase separation and interfacial diffusion approach, we developed a way to prepare DNA gel particles without adding any kind of cross-linker or organic solvent. Among the various agents studied, cationic surfactants offered particularly efficient control for encapsulation and DNA release from these DNA gel particles. The driving force for this strong association is the electrostatic interaction between the two components, as induced by the entropic increase due to the release of the respective counter-ions. However, little is known about the influence of the respective counter-ions on this surfactant-DNA interaction. Here we examined the effect of different counter-ions on the formation and properties of the DNA gel particles by mixing DNA (either single-(ssDNA) or double-stranded (dsDNA)) with the single chain surfactant dodecyltrimethylammonium (DTA). In particular, we used as counter-ions of this surfactant the hydrogen sulfate and trifluoromethane sulfonate anions and the two halides, chloride and bromide. Effects on the morphology of the particles obtained, the encapsulation of DNA and its release, as well as the haemocompatibility of these particles are presented, using counter-ion structure and DNA conformation as controlling parameters. Analysis of the data indicates that the degree of counter-ion dissociation from the surfactant micelles and the polar/hydrophobic character of the counter-ion are important parameters in the final properties of the particles. The stronger interaction with amphiphiles for ssDNA than for dsDNA suggests the important role of hydrophobic interactions in DNA.
Resumo:
The great challenges for researchers working in the field of vaccinology are optimizing DNA vaccines for use in humans or large animals and creating effective single-dose vaccines using appropriated controlled delivery systems. Plasmid DNA encoding the heat-shock protein 65 (hsp65) (DNAhsp65) has been shown to induce protective and therapeutic immune responses in a murine model of tuberculosis (TB). Despite the success of naked DNAhsp65-based vaccine to protect mice against TB, it requires multiple doses of high amounts of DNA for effective immunization. In order to optimize this DNA vaccine and simplify the vaccination schedule, we coencapsulated DNAhsp65 and the adjuvant trehalose dimycolate (TDM) into biodegradable poly (DL-lactide-co-glycolide) (PLGA) microspheres for a single dose administration. Moreover, a single-shot prime-boost vaccine formulation based on a mixture of two different PLGA microspheres, presenting faster and slower release of, respectively, DNAhsp65 and the recombinant hsp65 protein was also developed. These formulations were tested in mice as well as in guinea pigs by comparison with the efficacy and toxicity induced by the naked DNA preparation or BCG. The single-shot prime-boost formulation clearly presented good efficacy and diminished lung pathology in both mice and guinea pigs.
Resumo:
Small scale fluid flow systems have been studied for various applications, such as chemical reagent dosages and cooling devices of compact electronic components. This work proposes to present the complete cycle development of an optimized heat sink designed by using Topology Optimization Method (TOM) for best performance, including minimization of pressure drop in fluid flow and maximization of heat dissipation effects, aiming small scale applications. The TOM is applied to a domain, to obtain an optimized channel topology, according to a given multi-objective function that combines pressure drop minimization and heat transfer maximization. Stokes flow hypothesis is adopted. Moreover, both conduction and forced convection effects are included in the steady-state heat transfer model. The topology optimization procedure combines the Finite Element Method (to carry out the physical analysis) with Sequential Linear Programming (as the optimization algorithm). Two-dimensional topology optimization results of channel layouts obtained for a heat sink design are presented as example to illustrate the design methodology. 3D computational simulations and prototype manufacturing have been carried out to validate the proposed design methodology.