2 resultados para Harvesting stage

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The supraclavicular island flap has been widely used in head and neck reconstruction, providing an alternative to the traditional techniques like regional or free flaps, mainly because of its thin skin island tissue and reliable vascularity. Head and neck patients who require large reconstructions usually present poor clinical and healing conditions. An early experience using this flap for late-stage head and neck tumour treatment is reported. Forty-seven supraclavicular artery flaps were used to treat head and neck oncologic defects after cutaneous, intraoral and pharyngeal tumour resections. Dissection time, complications, donor and reconstructed area outcomes were assessed. The mean time for harvesting the flaps was 50 min by the senior author. All donor sites were closed primarily. Three cases of laryngopharyngectomy reconstruction developed a small controlled (salivary) leak that was resolved with conservative measures. Small or no strictures were detected on radiologic swallowing examinations and all patients regained normal swallowing function. Five patients developed donor site dehiscence. These wounds were treated with regular dressing until healing was complete. There were four distal flap necroses in this series. These necroses were debrided and closed primarily. The supraclavicular flap is pliable for head and neck oncologic reconstruction in late-stage patients. High-risk patients and modified radical neck dissection are not contraindications for its use. The absence of the need to isolate the pedicle offers quick and reliable harvesting. The arc of rotation on the base of the neck provides adequate length for pharyngeal, oral lining and to reconstruct the middle and superior third of the face. (C) 2012 British Association of Plastic, Reconstructive and Aesthetic Surgeons. Published by Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract This paper describes a design methodology for piezoelectric energy harvester s that thinly encapsulate the mechanical devices and expl oit resonances from higher- order vibrational modes. The direction of polarization determines the sign of the pi ezoelectric tensor to avoid cancellations of electric fields from opposite polarizations in the same circuit. The resultant modified equations of state are solved by finite element method (FEM). Com- bining this method with the solid isotropic material with penalization (SIMP) method for piezoelectric material, we have developed an optimization methodology that optimizes the piezoelectric material layout and polarization direc- tion. Updating the density function of the SIMP method is performed based on sensitivity analysis, the sequen- tial linear programming on the early stage of the opti- mization, and the phase field method on the latter stage