1 resultado para Harmony search
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Filtro por publicador
- JISC Information Environment Repository (1)
- Abertay Research Collections - Abertay University’s repository (1)
- Aberystwyth University Repository - Reino Unido (4)
- Adam Mickiewicz University Repository (1)
- Aquatic Commons (6)
- ARCA - Repositório Institucional da FIOCRUZ (1)
- Archive of European Integration (3)
- Archivo Digital para la Docencia y la Investigación - Repositorio Institucional de la Universidad del País Vasco (2)
- Avian Conservation and Ecology - Eletronic Cientific Hournal - Écologie et conservation des oiseaux: (1)
- B-Digital - Universidade Fernando Pessoa - Portugal (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (1)
- Biblioteca Digital da Produção Intelectual da Universidade de São Paulo (BDPI/USP) (9)
- Boston University Digital Common (10)
- Brock University, Canada (13)
- CaltechTHESIS (8)
- Cambridge University Engineering Department Publications Database (53)
- CentAUR: Central Archive University of Reading - UK (91)
- Center for Jewish History Digital Collections (1)
- Chinese Academy of Sciences Institutional Repositories Grid Portal (19)
- Cochin University of Science & Technology (CUSAT), India (4)
- CORA - Cork Open Research Archive - University College Cork - Ireland (3)
- Corvinus Research Archive - The institutional repository for the Corvinus University of Budapest (1)
- CUNY Academic Works (2)
- Dalarna University College Electronic Archive (1)
- Department of Computer Science E-Repository - King's College London, Strand, London (43)
- DI-fusion - The institutional repository of Université Libre de Bruxelles (3)
- Digital Archives@Colby (4)
- Doria (National Library of Finland DSpace Services) - National Library of Finland, Finland (2)
- DRUM (Digital Repository at the University of Maryland) (2)
- Duke University (8)
- eResearch Archive - Queensland Department of Agriculture; Fisheries and Forestry (1)
- Greenwich Academic Literature Archive - UK (4)
- Helda - Digital Repository of University of Helsinki (72)
- Indian Institute of Science - Bangalore - Índia (71)
- Infoteca EMBRAPA (1)
- Instituto Politécnico do Porto, Portugal (9)
- Lume - Repositório Digital da Universidade Federal do Rio Grande do Sul (1)
- Massachusetts Institute of Technology (4)
- Memoria Académica - FaHCE, UNLP - Argentina (3)
- Ministerio de Cultura, Spain (3)
- Plymouth Marine Science Electronic Archive (PlyMSEA) (1)
- Portal de Revistas Científicas Complutenses - Espanha (1)
- QSpace: Queen's University - Canada (1)
- QUB Research Portal - Research Directory and Institutional Repository for Queen's University Belfast (114)
- Queensland University of Technology - ePrints Archive (129)
- ReCiL - Repositório Científico Lusófona - Grupo Lusófona, Portugal (2)
- Repositório digital da Fundação Getúlio Vargas - FGV (18)
- Repositório Digital da UNIVERSIDADE DA MADEIRA - Portugal (1)
- Repositório Institucional da Universidade de Aveiro - Portugal (2)
- Repositório Institucional UNESP - Universidade Estadual Paulista "Julio de Mesquita Filho" (105)
- Royal College of Art Research Repository - Uninet Kingdom (1)
- RUN (Repositório da Universidade Nova de Lisboa) - FCT (Faculdade de Cienecias e Technologia), Universidade Nova de Lisboa (UNL), Portugal (3)
- SAPIENTIA - Universidade do Algarve - Portugal (2)
- School of Medicine, Washington University, United States (2)
- Universidad del Rosario, Colombia (1)
- Universidade de Lisboa - Repositório Aberto (1)
- Universitat de Girona, Spain (3)
- Universitätsbibliothek Kassel, Universität Kassel, Germany (2)
- Université de Lausanne, Switzerland (1)
- Université de Montréal, Canada (7)
- University of Southampton, United Kingdom (6)
- WestminsterResearch - UK (5)
Resumo:
Although nontechnical losses automatic identification has been massively studied, the problem of selecting the most representative features in order to boost the identification accuracy and to characterize possible illegal consumers has not attracted much attention in this context. In this paper, we focus on this problem by reviewing three evolutionary-based techniques for feature selection, and we also introduce one of them in this context. The results demonstrated that selecting the most representative features can improve a lot of the classification accuracy of possible frauds in datasets composed by industrial and commercial profiles.