2 resultados para Hand-over

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The impacts of change in the Grell convective scheme and biosphere-atmosphere transfer scheme (BATS) in RegCM3 are described. Three numerical experiments (RegZhang, RegClaris and RegArain) are conducted to reduce the RegCM3-Grell rainfall underestimation over tropical South America. The simulation referred to as RegZhang follows modifications made by Zhang et al. (2008) in the BATS. The RegClaris combines the RegZhang BATS parameters with a reduction of water drainage at the bottom of the subsoil layer in the regions covered by the tropical rain forest and a shorter convective time period for the Grell scheme. The RegArain considers this same modification in the Grell scheme, but uses a deeper total soil column and a deeper root system in the BATS. After the first year of simulation, the soil water content in RegZhang is progressively drained out of the soil column resulting in a deficit of rainfall in the Amazon. The RegClaris and RegArain, on the other hand, simulate a similar rainfall annual cycle in the Amazon, showing substantial improvement not only in phase but also in intensity. This improvement is partially related to an increase in evapotranspiration due to a larger availability of water in the soil column. A remote effect is also noted over the La Plata Basin region, where the larger summer rainfall rate may be related to the increase in moisture transport from the Amazon. Wind- and rainfall-based indices are applied to identify South American monsoon (SAM) timing. The RegClaris rainfall rates are adequate to identify the onset and the demise of SAM according to the observed data, whereas the rainfall deficit in RegZhang is associated with a delay in the onset and an early demise of the SAM.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Hand-carried ultrasound (HCU) devices have been demonstrated to improve the diagnosis of cardiac diseases over physical examination, and have the potential to broaden the versatility in ultrasound application. The role of these devices in the assessment of hospitalized patients is not completely established. In this study we sought to perform a direct comparison between bedside evaluation using HCU and comprehensive echocardiography (CE), in cardiology inpatient setting. Methods We studied 44 consecutive patients (mean age 54 ± 18 years, 25 men) who underwent bedside echocardiography using HCU and CE. HCU was performed by a cardiologist with level-2 training in the performance and interpretation of echocardiography, using two-dimensional imaging, color Doppler, and simple calliper measurements. CE was performed by an experienced echocardiographer (level-3 training) and considered as the gold standard. Results There were no significant differences in cardiac chamber dimensions and left ventricular ejection fraction determined by the two techniques. The agreement between HCU and CE for the detection of segmental wall motion abnormalities was 83% (Kappa = 0.58). There was good agreement for detecting significant mitral valve regurgitation (Kappa = 0.85), aortic regurgitation (kappa = 0.89), and tricuspid regurgitation (Kappa = 0.74). A complete evaluation of patients with stenotic and prosthetic dysfunctional valves, as well as pulmonary hypertension, was not possible using HCU due to its technical limitations in determining hemodynamic parameters. Conclusion Bedside evaluation using HCU is helpful for assessing cardiac chamber dimensions, left ventricular global and segmental function, and significant valvular regurgitation. However, it has limitations regarding hemodynamic assessment, an important issue in the cardiology inpatient setting.