5 resultados para HIGH-DIELECTRIC-CONSTANT
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this work, barium zirconate (BaZrO3) ceramics synthesized by solid state reaction method and sintered at 1670 degrees C for 4 h were characterized by X-ray diffraction (XRD), Rietveld refinement, and Fourier transform infrared (FT-IR) spectroscopy. XRD patterns, Rietveld refinement data and FT-IR spectra which confirmed that BaZrO3 ceramics have a perovskite-type cubic structure. Optical properties were investigated by ultraviolet-visible (UV-vis) absorption and photoluminescence (PL) measurements. UV-vis absorption spectra suggested an indirect allowed transition with the existence of intermediary energy levels within the band gap. Intense visible green PL emission was observed in BaZrO3 ceramics upon excitation with a 350 nm wavelength. This behavior is due to a majority of deep defects within the band gap caused by symmetry breaking in octahedral [ZrO6] clusters in the lattice. The microwave dielectric constant and quality factor were measured using the method proposed by Hakki-Coleman. The dielectric resonator antenna (DRA) was investigated experimentally and numerically using a monopole antenna through an infinite ground plane and Ansoft's high frequency structure simulator software, respectively. The required resonance frequency and bandwidth of DRA were investigated by adjusting the dimension of the same material. (C) 2011 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
This paper presents a study of the influence of particle size on the structural and dielectric properties of Pb0.85La0.15TiO3 (PLT15) ferroelectric ceramic samples. The samples were prepared with average grain size of 1.69 +/- 0.08 mu m and 146 +/- 8 nm using, respectively, conventional and spark plasma sintering techniques. A decrease in the tetragonality degree as the crystallite size decreased was explained by an internal stress caused by the existence of a large amount of grain boundaries. The local structure exhibited no significant modification and the dielectric measurements showed a diffuse phase transition and a reduction in the permittivity magnitude at T-m as the average grain size decreased. The nanostructured ceramic sample prepared at a relatively lower temperature and sintering time presented a dielectric constant value of approximately 2000 at room temperature. (c) 2012 Elsevier Ltd and Techna Group S.r.l. All rights reserved.
Resumo:
In the present paper, we report on the molecular interaction and photochemistry of TiO2 nanoparticles (NPs) and cytochrome c systems for understanding the effects of supramolecular organization and electron transfer by using two TiO2 structures: P25 TiO2 NPs and titanate nanotubes. The adsorption and reduction of cytochrome c heme iron promoted by photo-excited TiO2, arranged as P25 TiO2 NPs and as nanotubes, were characterized using electronic absorption spectroscopy, thermogravimetric analysis, and atomic force microscopy. In an aqueous buffered suspension (pH 8.0), the mass of cytochrome c adsorbed on the P25 TiO2 NP surface was 2.3 fold lower (0.75 mu g m(-2)) than that adsorbed on the titanate nanotubes (1.75 mu g m(-2)). Probably due to the high coverage of titanate nanotubes by adsorbed cytochrome c, the low amount of soluble remaining protein was not as efficiently photo-reduced by this nanostructure as it was by the P25 TiO2 NPs. Cytochrome c, which desorbed from both titanium materials, did not exhibit changes in its redox properties. In the presence of the TiO2 NPs, the photo-induced electron transfer from water to soluble cytochrome c heme iron was corroborated by the following findings: (i) identification by EPR of the hydroxyl radical production during the irradiation of an aqueous suspension of TiO2 NPs, (ii) impairment of a cytochrome c reduction by photo-excited TiO2 in the presence of dioxane, which affects the dielectric constant of the water, and (iii) change in the rate of TiO2-promoted cytochrome c reduction when water was replaced with D2O. The TiO2-promoted photo-reduction of cytochrome c was reverted by peroxides. Cytochrome c incorporated in the titanate nanotubes was also reversibly reduced under irradiation, as confirmed by EPR and UV-visible spectroscopy.
Resumo:
Multilayered nanocomposite films (thickness 50-90 nm) of cobalt ferrite nanoparticles (np-CoFe2O4, 18 nm) were deposited on top of interdigitated microelectrodes by the layer-by-layer technique in order to study their dielectric properties. For that purpose, two different types of nanocomposite films were prepared by assembling np-CoFe2O4 either with poly(3,4-ethylenedioxy thiophene):poly(styrene sulfonic acid) or with polyaniline and sulfonated lignin. Despite the different film architectures, the morphology of both was dominated by densely-packed layers of nanoparticles surrounded by polyelectrolytes. The dominant effect of np-CoFe2O4 was also observed after impedance spectroscopy measurements, which revealed that dielectric behavior of the nanocomposites was largely influenced by the charge transport across nanoparticle-polyelectrolyte interfaces. For example, nanocomposites containing np-CoFe2O4 exhibited a single low-frequency relaxation process, with time constants exceeding 15 ms. At 1 kHz, the dielectric constant and the dissipation factor (tan ᵟ) of these nanocomposites were 15 and 0.15, respectively. These values are substantially inferior to those reported for pressed pellets made exclusively of similar nanoparticles. Impedance data were further fitted with equivalent circuit models from which individual contributions of particle's bulk and interfaces to the charge transport within the nanocomposites could be evaluated. The present study evidences that such nanocomposites display a dielectric behavior dissimilar from that exhibited by their individual counterparts much likely due to enlarged nanoparticle- polyelectrolyte interfaces.
Resumo:
In this work, it was investigated the effect of different moisture contents on PVA-gelatin films by means of dielectric properties, infrared spectroscopy, microwave response and gravimetric method. The films were elaborated from a blend of gelatin and PVA, with 0 and 25 % glycerol. The sorption isotherms were determined by gravimetric methods, at 25 A degrees C. A capacimeter was used for dielectric measurements, and a device called SOLFAN setup was used for microwave measurements. The sorption isotherms were markedly affected by the glycerol content and relative humidity, due to the hygroscopic nature of the films. The dielectric constant and the microwave response signal were also strongly affected by the moisture and glycerol content in the films. Finally, Infrared spectra showed some changes in the amide peak positions, attributed to the modifications in the interactions between the macromolecules. The behaviors obtained in this work were explained on the basis the way the water enters in the film matrix.