3 resultados para HIGH CAPACITY OPTICAL FIBER TRANSPORT

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

This paper presents a theoretical model developed for estimating the power, the optical signal to noise ratio and the number of generated carriers in a comb generator, having as a reference the minimum optical signal do noise ratio at the receiver input, for a given fiber link. Based on the recirculating frequency shifting technique, the generator relies on the use of coherent and orthogonal multi-carriers (Coherent-WDM) that makes use of a single laser source (seed) for feeding high capacity (above 100 Gb/s) systems. The theoretical model has been validated by an experimental demonstration, where 23 comb lines with an optical signal to noise ratio ranging from 25 to 33 dB, in a spectral window of similar to 3.5 nm, are obtained.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

We report on a temperature sensor based on the monitoring of the luminescence spectrum of CdSe/ZnS nanocrystals, dispersed in mineral oil and inserted into the core of a photonic crystal fiber. The high overlap between the pump light and the nanocrystals as well as the luminescence guiding provided by the fiber geometry resulted in relatively high luminescence powers and improved optical signal-to-noise ratio (OSNR). Also, both core end interfaces were sealed so as to generate a more stable and robust waveguide structure. Temperature sensitivity experiments indicated a 70 pm/degrees C spectral shift over the 5 degrees C to 90 degrees C range.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

In this paper, we perform a thorough analysis of a spectral phase-encoded time spreading optical code division multiple access (SPECTS-OCDMA) system based on Walsh-Hadamard (W-H) codes aiming not only at finding optimal code-set selections but also at assessing its loss of security due to crosstalk. We prove that an inadequate choice of codes can make the crosstalk between active users to become large enough so as to cause the data from the user of interest to be detected by other user. The proposed algorithm for code optimization targets code sets that produce minimum bit error rate (BER) among all codes for a specific number of simultaneous users. This methodology allows us to find optimal code sets for any OCDMA system, regardless the code family used and the number of active users. This procedure is crucial for circumventing the unexpected lack of security due to crosstalk. We also show that a SPECTS-OCDMA system based on W-H 32(64) fundamentally limits the number of simultaneous users to 4(8) with no security violation due to crosstalk. More importantly, we prove that only a small fraction of the available code sets is actually immune to crosstalk with acceptable BER (<10(-9)) i.e., approximately 0.5% for W-H 32 with four simultaneous users, and about 1 x 10(-4)% for W-H 64 with eight simultaneous users.