3 resultados para HETEROCYCLES
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work describes the synthesis of five O-silyloxy-1,3-thiazoles and their use as fast-response turn-on probes for fluoride ion detection in polar aprotic solvents and in aqueous cetyltrimethylammonium bromide micellar medium. The fluoride-triggered deprotection of these silyl ethers results in ca. 180-nm shifts in the fluorescence emission wavelengths. All compounds are suitable for the detection of fluoride ions with a detection limit in DMSO of 107 mol?L1; derivatives containing a 2-pyridyl moiety in the thiazole system are more efficient than those with a 3- or 4-pyridyl moiety. Typical anionic interferents, such as acetate or chloride, are not detected by O-silyloxy-1,3-thiazoles, making these compounds very specific for fluoride.
Resumo:
Monomers based on plant oil derivatives bearing furan heterocycles appended through thiol-ene click chemistry were prepared and, subsequently, polymerized via a second type of click reaction, i. e. the Diels-Alder (DA) polycondensation between furan and maleimide complementary moieties. Two basic approaches were considered for these DA polymerizations, namely (i) the use of monomers with two terminal furan rings in conjunction with bismaleimides (AA + BB systems) and (ii) the use of a protected AB monomer incorporating both furan and maleimide end groups. This study clearly showed that both strategies were successful, albeit with different outcomes, in terms of the nature of the ensuing products. The application of the retro-DA reaction to these polymers confirmed their thermoreversible character, i. e. the clean-cut return to their respective starting monomers, opening the way to original macromolecular materials with interesting applications, like mendability and recyclability.
Resumo:
We modified the thiazolidinic ring at positions N3, C4, and C5, yielding compounds 6-24. Compounds with a phenyl at position N3, 15-19, 22-24, exhibited better inhibitory properties for cruzain and against the parasite than 2-iminothiazolidin-4-one S. We were able to identify one high-efficacy trypanocidal compound, 2-minothiazolidin-4-one 18, which inhibited the activity of cruzain and the proliferation of epirnastigotes and was cidal for trypomastigotes but was not toxic for splenocytes. Having located some of the structural determinants of the trypanocidal properties, we subsequently wished to determine if the exchange of the thiazolidine for a thiazole ring leaves the functional properties unaffected. We therefore tested thiazoles 26-45 and observed that they did not inhibit cruzain, but they exhibited trypanocidal effects. Parasite development was severely impaired when treated with 18, thus reinforcing the notion that this class of heterocycles can lead to useful cidal agents for Chagas disease.