6 resultados para HAFNIUM GRAVIMETRY

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

The molecular method is used to obtain nuclear electric quadrupole moment (NQM) values for hafnium through electric field gradients (EFGs) at this nucleus in HfO and HfS. Dirac-Coulomb calculations with the Coupled Cluster approach, DC-CCSD (T) and DC-CCSD-T, were carried out to achieve the most accurate estimates of these EFGs. Higher order corrections are also added. Hence, the most reliable values for 177Hf and 179Hf determined here are 3319(33) and 3750(37) mbarn, respectively, in nice accordance with the best currently accepted NQMs for this element. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Using the high-resolution performance of the fragment separator FRS at GSI we have discovered 60 new neutron-rich isotopes in the atomic number range of 60 <= Z <= 78. The new isotopes were unambiguously identified in reactions with a U-238 beam impinging on a Be target at 1 GeV/nucleon. The production cross-section for the new isotopes have been measured down to the pico-barn level and compared with predictions of different model calculations. For elements above hafnium fragmentation is the dominant reaction mechanism which creates the new isotopes, whereas fission plays a dominant role for the production of the new isotopes up to thulium. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polymers from natural sources are particularly useful as biomaterials for medical devices applications. In this study, the results of characterization of a gelatin network electrolyte doped with europium triflate (Eu(CF3SO3)(3)) are described. The unusual electronic properties of the trivalent lanthanide ions make them well suited as luminescent reporter groups, with many applications in biotechnology. Samples of solvent-free electrolytes were prepared with a range of guest salt concentration. Materials based on Eu(CF3SO3)(3) were obtained as mechanically robust, flexible, transparent, and completely amorphous films. Samples were characterized by thermal analysis (thermo-gravimetry analysis (TGA) and differential scanning calorimetry (DSC), electrochemical stability, scanning electronmicroscopy (SEM), and photoluminescence spectroscopy.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In urban areas of Brazil, vehicle emissions are the principal source of fine particulate matter (PM2.5). The World Health Organization air quality guidelines state that the annual mean concentration of PM2.5 should be below 10 mu g m(-3). In a collaboration of Brazilian institutions, coordinated by the University of Sao Paulo School of Medicine and conducted from June 2007 to August 2008, PM2.5 mass was monitored at sites with high traffic volumes in six Brazilian state capitals. We employed gravimetry to determine PM2.5 mass concentrations, reflectance to quantify black carbon concentrations, X-ray fluorescence to characterize elemental composition, and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM2.5 concentrations and proportions of black carbon (BC) in the cities of Sao Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Recife, and Porto Alegre were 28.1 +/- 13.6 mu g m(-3) (38% BC), 17.2 +/- 11.2 mu g m(-3) (20% BC), 14.7 +/- 7.7 mu g m(-3) (31% BC), 14.4 +/- 9.5 mu g m(-3) (30% BC), 7.3 +/- 3.1 mu g m(-3) (26% BC), and 13.4 +/- 9.9 mu g m(-3) (26% BC), respectively. Sulfur and minerals (Al, Si, Ca, and Fe), derived from fuel combustion and soil resuspension, respectively, were the principal elements of the PM2.5 mass. We discuss the long-term health effects for each metropolitan region in terms of excess mortality risk, which translates to greater health care expenditures. This information could prove useful to decision makers at local environmental agencies.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

In Brazil, the principal source of air pollution is the combustion of fuels (ethanol, gasohol, and diesel). In this study, we quantify the contributions that vehicle emissions make to the urban fine particulate matter (PM2.5) mass in six state capitals in Brazil, collecting data for use in a larger project evaluating the impact of air pollution on human health. From winter 2007 to winter 2008, we collected 24-h PM2.5 samples, employing gravimetry to determine PM2.5 mass concentrations; reflectance to quantify black carbon concentrations; X-ray fluorescence to characterize elemental composition; and ion chromatography to determine the composition and concentrations of anions and cations. Mean PM2.5 concentrations in the cities of Sao Paulo, Rio de Janeiro, Belo Horizonte, Curitiba, Porto Alegre, and Recife were 28, 17.2, 14.7, 14.4, 13.4, and 7.3 mu g/m(3), respectively. In Sao Paulo and Rio de Janeiro, black carbon explained approximately 30% of the PM2.5 mass. We used receptor models to identify distinct source-related PM2.5 fractions and correlate those fractions with daily mortality rates. Using specific rotation factor analysis, we identified the following principal contributing factors: soil and crustal material; vehicle emissions and biomass burning (black carbon factor); and fuel oil combustion in industries (sulfur factor). In all six cities, vehicle emissions explained at least 40% of the PM2.5 mass. Elemental composition determination with receptor modeling proved an adequate strategy to identify air pollution sources and to evaluate their short- and long-term effects on human health. Our data could inform decisions regarding environmental policies vis-a-vis health care costs.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

An accurate knowledge of several metal-boron phase diagrams is important to evaluation of higher order systems such as metal-silicon-boron ternaries. The refinement and reassessment of phase diagram data is a continuous work, thus the reevaluation of metal-boron systems provides the possibility to confirm previous data from an investigation using higher purity materials and better analytical techniques. This work presents results of rigorous microstructural characterization of as-cast hafnium-boron alloys which are significant to assess the liquid composition associated to most of the invariant reactions of this system. Alloys were prepared by arc melting high purity hafnium (minimum 99.8%) and boron (minimum 99.5%) slices under argon atmosphere in water-cooled copper crucible with non consumable tungsten electrode and titanium getter. The phases were identified by scanning electron microscopy, using back-scattered electron image mode and X-ray diffraction. In general, a good agreement was found between our data and those from the currently accepted Hafnium-Boron phase diagram. The phases identified are αHfSS and B-RhomSS, the intermediate compounds HfB and HfB2 and the liquide L. The reactions are the eutectic L ⇔ αHfSS + HfB and L ⇔ HfB2 + B-Rhom, the peritectic L + HfB2 ⇔ HfB and the congruent formation of HfB2.