9 resultados para Gripe A(H1N1) 2009
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives The aim of the present paper is to assess the influence of demographic, muscle enzymes, JDM scores and treatment on non-adjuvanted influenza A H1N1/2009 vaccine immunogenicity in juvenile dermatomyositis (JDM) patients. Methods Thirty JDM patients and 81 healthy age-matched controls were vaccinated. All participants were evaluated pre- and 21 days post-vaccination and serology for anti-HI NI was performed by haemagglutination inhibition assay. Muscle enzymes, JDM scores and treatment were evaluated before and after vaccination. Adverse events were reported. Results After immunisation seroconversion rates were significantly lower in JDM patients compared to age-matched controls (86.7 vs. 97.5%, p=0.044), whereas seropmtection (p=0.121), geometric mean titres (GMT) (p=0.992) and factor increase (FI) in GMT (p=0.827) were similar in both groups. Clinical and labomtorial evaluations revealed that JDM scores and muscle enzymes remained stable throughout the study (p>0.05). A higher frequency of chronic course was observed in non-seroconverted compared to seroconverted (100% vs. 27%, p=0.012). Regarding treatment, a lower rate of seroconversion was observed in patients under prednisone>20mg/day (50% vs. 4%, p=0.039), and in those treated with a combination of prednisone, methotrexate and cyclosporine (50% vs. 4%, p=0.039). Local and systemic vaccine adverse events were mild and similar in patients and controls (p>0.05). Conclusion This study identified that chronic course and immunosuppressive therapy are the major factors hampering seroconversion was JDM, suggesting that a specific protocol may be required for this subgroup of patients. In spite of that, a single dose of non-adjuvanted influenza A/H1N1 2009 vaccine was generally seroprotective in this disease with no evident deleterious effect in disease itself (ClinicalTrials.gov, no. NCT01151644).
Resumo:
Objective. To assess the immunogenicity and safety of non-adjuvanted influenza A H1N1/2009 vaccine in patients with juvenile autoimmune rheumatic disease (ARD) and healthy controls, because data are limited to the adult rheumatologic population. Method's. A total of 237 patients with juvenile ARD [juvenile systemic lupus erythematosus (JSLE), juvenile idiopathic arthritis (JIA), juvenile dermatomyositis (JDM), juvenile scleroderma, and vasculitis] and 91 healthy controls were vaccinated. Serology for anti-H1N1 was performed by hemagglutination inhibition assay. Seroprotection rate, seroconversion rate, and factor-increase in geometric mean titer (GMT) were calculated. Adverse events were evaluated. Results. Age was comparable in patients and controls (14.8 +/- 3.0 vs 14.6 +/- 3.7 years, respectively; p = 0.47). Three weeks after immunization, seroprotection rate (81.4% vs 95.6%; p = 0.0007), seroconversion rate (74.3 vs 95.6%; p < 0.0001), and the factor-increase in GMT (12.9 vs 20.3; p = 0.012) were significantly lower in patients with juvenile ARD versus controls. Subgroup analysis revealed reduced seroconversion rates in JSLE (p < 0.0001), JIA (p = 0.008), JDM (p = 0.025), and vasculitis (p = 0.017). Seroprotection (p < 0.0001) and GMT (p < 0.0001) were decreased only in JSLE. Glucocorticoid use and lymphopenia were associated with lower seroconversion rates (60.4 vs 82.9%; p = 0.0001; and 55.6 vs 77.2%; p = 0.012). Multivariate logistic regression including diseases, lymphopenia, glucocorticoid, and immunosuppressants demonstrated that only glucocorticoid use (p = 0.012) remained significant. Conclusion. This is the largest study to demonstrate a reduced but adequate immune response to H1N1 vaccine in patients with juvenile ARD. It identified current glucocorticoid use as the major factor for decreased antibody production. The short-term safety results support its routine recommendation for patients with juvenile ARD. ClinicalTrials.gov; NCT01151644. (First Release Nov 15 2011; J Rheumatol 2012;39:167-73; doi:10.3899/jrheum.110721)
Resumo:
Methods We conducted a phase I, multicenter, randomized, double-blind, placebo-controlled, multi-arm (10) parallel study involving healthy adults to evaluate the safety and immunogenicity of influenza A (H1N1) 2009 non-adjuvanted and adjuvanted candidate vaccines. Subjects received two intramuscular injections of one of the candidate vaccines administered 21 days apart. Antibody responses were measured by means of hemagglutination-inhibition assay before and 21 days after each vaccination. The three co-primary immunogenicity end points were the proportion of seroprotection >70%, seroconversion >40%, and the factor increase in the geometric mean titer >2.5. Results A total of 266 participants were enrolled into the study. No deaths or serious adverse events were reported. The most commonly solicited local and systemic adverse events were injection-site pain and headache, respectively. Only three subjects (1.1%) reported severe injection-site pain. Four 2009 influenza A (H1N1) inactivated monovalent candidate vaccines that met the three requirements to evaluate influenza protection, after a single dose, were identified: 15 μg of hemagglutinin antigen without adjuvant; 7.5 μg of hemagglutinin antigen with aluminum hydroxide, MPL and squalene; 3.75 μg of hemagglutinin antigen with aluminum hydroxide and MPL; and 3.75 μg of hemagglutinin antigen with aluminum hydroxide and squalene. Conclusions Adjuvant systems can be safely used in influenza vaccines, including the adjuvant monophosphoryl lipid A (MPL) derived from Bordetella pertussis with squalene and aluminum hydroxide, MPL with aluminum hydroxide, and squalene and aluminum hydroxide.
Resumo:
Background Immunosuppressed individuals present serious morbidity and mortality from influenza, therefore it is important to understand the safety and immunogenicity of influenza vaccination among them. Methods This multicenter cohort study evaluated the immunogenicity and reactogenicity of an inactivated, monovalent, non-adjuvanted pandemic (H1N1) 2009 vaccine among the elderly, HIV-infected, rheumatoid arthritis (RA), cancer, kidney transplant, and juvenile idiopathic arthritis (JIA) patients. Participants were included during routine clinical visits, and vaccinated according to conventional influenza vaccination schedules. Antibody response was measured by the hemagglutination-inhibition assay, before and 21 days after vaccination. Results 319 patients with cancer, 260 with RA, 256 HIV-infected, 149 elderly individuals, 85 kidney transplant recipients, and 83 with JIA were included. The proportions of seroprotection, seroconversion, and the geometric mean titer ratios postvaccination were, respectively: 37.6%, 31.8%, and 3.2 among kidney transplant recipients, 61.5%, 53.1%, and 7.5 among RA patients, 63.1%, 55.7%, and 5.7 among the elderly, 59.0%, 54.7%, and 5.9 among HIV-infected patients, 52.4%, 49.2%, and 5.3 among cancer patients, 85.5%, 78.3%, and 16.5 among JIA patients. The vaccine was well tolerated, with no reported severe adverse events. Conclusions The vaccine was safe among all groups, with an acceptable immunogenicity among the elderly and JIA patients, however new vaccination strategies should be explored to improve the immune response of immunocompromised adult patients. (ClinicalTrials.gov, NCT01218685)
Resumo:
The goal of the present study was to evaluate the influence of the influenza A H1N1/2009 vaccine on dermatomyositis/polymyositis (DM/PM) disease parameters and the potential deleterious effect of therapy on immune response. Thirty-seven DM and 21 PM patients (Bohan and Peter's criteria) were gender- and age-matched to 116 healthy controls. Seroprotection, seroconversion, the geometric mean titers (GMTs) and the factor increase (FI) in the GMTs were calculated. Disease safety was determined from a muscle enzyme analysis and the DM/PM scores [patient's visual analog scale (VAS), physician's VAS, manual muscle strength (MMT-8)] evaluated pre- and post-vaccination. The mean age (43.1 +/- 9.9 vs. 43.8 +/- 8.4 years, p = 0.607) and gender distribution (p = 1.00) were comparable between the patients and controls. After 21 days, seroconversion (p = 0.394), seroprotection (p = 0.08), GMT (p = 0.573) and the FI in the GMT (p = 0.496) were similar in both groups. The disease and muscle parameters remained stable throughout the study, including the creatine kinase (p = 0.20) and aldolase levels (p = 0.98), the physicians' VAS (p = 1.00), the patients' VAS (p = 1.00) and the MMT-8 (p = 1.00). Regarding the influence of treatment, the seroconversion rates were comparable between the controls and patients undergoing treatment with glucocorticoid (GC) (p = 0.969), GC >0.5 mg/kg/day (p = 0.395) and GC + immunosuppressors (p = 0.285). Vaccine-related adverse events were mild and similar in the DM/PM and control groups (p > 0.05). Our data support the administration of the pandemic influenza A H1N1/2009 vaccination in DM/PM, as we found no short-term harmful effects related to the disease itself and adequate immunogenicity in spite of therapy. Further studies are necessary to identify any long-term adverse effects in patients with these diseases.(c) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Objective. To assess the efficacy and safety of pandemic 2009 influenza A (H1N1) in SLE under different therapeutic regimens. Methods. A total of 555 SLE patients and 170 healthy controls were vaccinated with a single dose of a non-adjuvanted preparation. According to current therapy, patients were initially classified as SLE No Therapy (n = 75) and SLE with Therapy (n = 480). Subsequent evaluations included groups under monotherapy: chloroquine (CQ) (n = 105), prednisone (PRED) epsilon 20 mg (n = 76), immunosuppressor (IS) (n = 95) and those with a combination of these drugs. Anti-H1N1 titres and seroconversion (SC) rate were evaluated at entry and 21 days post-vaccination. Results. The SLE with Therapy group had lower SC compared with healthy controls (59.0 vs 80.0%; P < 0.0001), whereas the SLE No Therapy group had equivalent SC (72 vs 80.0%; P = 0.18) compared with healthy controls. Further comparison revealed that the SC of SLE No Therapy (72%) was similar to the CQ group (69.5%; P = 0.75), but it was significantly reduced in PRED epsilon 20 mg (53.9%; P = 0.028), IS (55.7%; P = 0.035) and PRED epsilon 20 mg + IS (45.4%; P = 0.038). The concomitant use of CQ in each of these later regimens was associated with SC responses comparable with SLE No Therapy group (72%): PRED epsilon 20 mg + CQ (71.4%; P = 1.00), IS + CQ (65.2%; P = 0.54) and PRED epsilon 20 mg + IS + CQ (57.4%; P = 0.09). Conclusion. Pandemic influenza A H1N1/2009 vaccine response is diminished in SLE under immunosuppressive therapy and antimalarials seems to restore this immunogenicity.
Resumo:
Introduction Vaccination is an effective tool against several infectious agents including influenza. In 2010, the Advisory Committee on Immunization Practices (ACIP) recommended influenza A H1N1/2009 immunization for high risk groups, including juvenile idiopathic arthritis (JIA) patients and more recently the EULAR task force reinforced the importance of vaccination in immunosuppressed pediatric rheumatologic patients. We have recently shown that Influenza A H1N1/2009 vaccination generated protective antibody production with short-term safety profile among 93 JIA patients, but the possible impact of the vaccine in autoimmune response in JIA have not been studied. Therefore, we aimed to assess the production of some autoantibodies generated following influenza H1N1 vaccination in JIA patients. Objectives To assess the autoimmune response and H1N1 serology following influenza H1N1 vaccination in patients with JIA. Methods Cepa A/California/7/2009 (NYMC X-179A) anti-H1N1 was used to vaccinate JIA patients: 1 dose of immunization was given to all participants and those <9yrs of age received a second booster 3 weeks apart. Sera were analyzed before and 3 weeks following complete vaccination. Serology against H1N1 virus was performed by hemagglutination inhibition antibody assay, rheumatoid factor (RF) by latex fixation test, antinuclear antibodies (ANA) by IIF, IgM and IgG anticardiolipin (aCL) by ELISA.Results Among 98 JIA patients that were vaccinated, 58 sera were available for this study. Mean age of 58 JIA patients was 23.9 ± 9.5 yrs, 38 were females and 20 males with mean disease duration of 14.7 ± 10.1 yrs. JIA subtypes were: 33 (57%) poliarticular, 10 (17%) oligoarticular, 6 (10%) systemic and 9 (16%) other. Sixteen patients were off drugs while 42 (72%) were under different pharmacotherapy: 32 (55%) were on 1 DMARD/IS, 10 (17%) on 2 DMARDs/IS, 19 (33%) antimalarials, 29 (50%) MTX, 8(14%) sulfasalazine, 6 (10%) anti-TNFs, 4 (7%) abatacept; no patient was using prednisone >0.5 mg/kg/d. Seroprotection rates against H1N1 influenza increased from 23 to 83% and seroconversion rates were achieved in 78% JIA. Prior to vaccination, 31(53.4%) JIA patients were ANA+, 6(10.3%) RF+, and 4 (7%) IgM + IgG aCL+. After complete H1N1 vaccination, positivity for ANA remained the same whereas 1 patient became negative for IgG aCL, and another for RF, IgM and IgG aCL. One (1.7%) patient turned low titer IgG aCL+. Conclusion Vaccination of JIA patients against pandemic influenza A (H1N1) generated successful protective antibody production without the induction of autoantibody production, except for 1 patient that became positive for low titer IgG aCL, supporting its safety.
Resumo:
Despite the severity of pneumonia in patients with pandemic influenza A infection (H1N1), no validated risk scores associated with H1N1 pneumonia were tested. In this prospective observational study, we analyzed data of consecutive patients in our emergency room, hospitalized because of pneumonia between July and August 2009 in a public hospital in Brazil. The following pneumonia scoring systems were applied: the SMART-COP rule; the Pneumonia Severity Index; and the CURB-65 rule. Of 105 patients with pneumonia, 53 had H1N1 infection. Among them, only 9.5% that had a low risk according to SMART-COP were admitted to ICU, compared with 36.8% of those with the Pneumonia Severity Index score of 1-2 and 49% of those with CURB-65 score of 0-1. The SMART-COP had an accuracy of 83% to predict ICU admission. The SMART-COP rule presented the best performance to indicate ICU admission in patients with H1N1 pneumonia. European Journal of Emergency Medicine 19: 200-202 (C) 2012 Wolters Kluwer Health vertical bar Lippincott Williams & Wilkins.
Resumo:
Methods. One hundred and twenty patients (RA, n = 41; AS, n = 57; PsA, n = 22) on anti-TNF agents (monoclonal, n = 94; soluble receptor, n = 26) were compared with 116 inflammatory arthritis patients under DMARDs and 117 healthy controls. Seroprotection, seroconversion (SC), geometric mean titre, factor increase in geometric mean titre and adverse events were evaluated 21 days after vaccination. Results. After immunization, SC rates (58.2% vs 74.3%, P = 0.017) were significantly lower in SpA patients receiving anti-TNF therapy, whereas no difference was observed in RA patients receiving this therapy compared with healthy controls (P = 0.067). SpA patients receiving mAbs (infliximab/adalimumab) had a significantly lower SC rate compared with healthy controls (51.6% vs 74.3%, P = 0.002) or those on DMARDs (51.6% vs 74.7%, P = 0.005), whereas no difference was observed for patients on etanercept (86.7% vs 74.3%, P = 0.091). Further analysis of non-seroconverting and seroconverting SpA patients revealed that the former group had a higher mean age (P = 0.003), a higher frequency of anti-TNF (P = 0.031) and mAbs (P = 0.001) and a lower frequency of MTX (P = 0.028). In multivariate logistic regression, only older age (P = 0.015) and mAb treatment (P = 0.023) remained significant factors for non-SC in SpA patients. Conclusion. This study revealed a distinct disease pattern of immune response to the pandemic influenza vaccine in inflammatory arthritis patients receiving anti-TNF agents, illustrated by a reduced immunogenicity solely in SpA patients using mAbs. Trial Registration: ClinicalTrials.gov, ext-link-type="uri" xlink:href="www.clinicaltrials.gov" xmlns:xlink="http://www.w3.org/1999/xlink">www.clinicaltrials.gov, NCT01151644.