7 resultados para Grass leaf morphology
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Species of Smilax,, also known as greenbrier, are widely distributed in Brazil and their commercial trades are carried out by the extractivism of native species. We the aim to provide information about the germination and development of seedlings in four Smilax species, different experiments were developed under controlled conditions. We evaluated two germination treatments: temperature (30 degrees C and 20-30 degrees C) and light (presence/absence), and for few cases the tetrazolium treatment was applied. A different treatment response was observed among the studied species. Light had a significant influence in S. brasiliensis, with the highest germination rates at 20-30 C in dark conditions. S. campestris showed significant differences among temperature treatments, but not to light; while S. cissoides showed high germination rates (66-78%), independently of treatment. However, S. polyantha had low germination rates (19-24%). After one year, the expanded leaves showed different characteristics among the studied species. Leaves of S. brasiliensis were ovate, coriaceous, three main veins and prickle-like structures only on the midrib on abaxial face. S. campestris leaves were oblong, coriaceous and prickle-like structures were located at the leaf midrib and margin. S. cissoides had ovate-elliptic, membranaceous leaves, with three main veins with prickle-like structures on the abaxial face. S. polyantha leaves showed ovate-elliptic. coriaceous leaves, with three main veins, translucent secondary veins and no prickle-like structures. A seedling identification key was elaborated based on morphological characteristics. Rev. Biol. Trop. 60 (1): 495-504. Epub 2012 March 01.
Resumo:
Protoplast fusion between sweet orange and mandarin/mandarin hybrids scion cultivars was performed following the model "diploid embryogenic callus protoplast + diploid mesophyll-derived protoplast". Protoplasts were isolated from embryogenic calli of 'Pera' and 'Westin' sweet orange cultivars (Citrus sinensis) and from young leaves of 'Fremont', Nules', and 'Thomas' mandarins (C. reticulata), and 'Nova' tangelo [C. reticulata x (C. paradisi x C. reticulata)]. The regenerated plants were characterized based on their leaf morphology (thickness), ploidy level, and simple sequence repeat (SSR) molecular markers. Plants were successfully generated only when 'Pera' sweet orange was used as the embryogenic parent. Fifteen plants were regenerated being 7 tetraploid and 8 diploid. Based on SSR molecular markers analyses all 7 tetraploid regenerated plants revealed to be allotetraploids (somatic hybrids), including 2 from the combination of 'Pera' sweet orange + 'Fremont' mandarin, 3 'Pera' sweet orange + 'Nules' mandarin, and 2 'Pera' sweet orange + 'Nova' tangelo, and all the diploid regenerated plants showed the 'Pera' sweet orange marker profile. Somatic hybrids were inoculated with Alternaria alternata and no disease symptoms were detected 96 h post-inoculation. This hybrid material has the potential to be used as a tetraploid parent in interploid crosses for citrus scion breeding.
Resumo:
We present a new approach to determine the number and composition of guilds, using the hyperdiverse leaf-litter ant fauna as a model, based on appropriate morphological variables and species co-occurrence null models to describe the complex assemblages of interacting Species Community structure at the 1-m(2) scale. We obtained 18 linear morphometric measures from 949 workers of 171 leaf-litter ant species (18762 measurements) surveyed in four Atlantic Forest localities to test whether the assemblages are morphologically structured; the morphological characters were selected to indicate diet and foraging habits. Principal components analysis was used to characterize the morphospace and to describe the guild structure (number of species and composition). The guild proportionality assembly rule (significant tendency toward constant proportion of species in guilds) was assessed at the 1-m(2) scale. Our analysis indicates that the division of leaf-litter ants into guilds is based mainly on microhabitat distribution in the leaf-litter, body size and shape, eye size, and phylogeny. The same guild scheme applied to four more sites shows that different Atlantic Forest areas have the same leaf-fitter ant guilds. The guild proportionality assembly rule was confirmed for most guilds, Suggesting that there are guild-specific limitations on species coexistence within assemblages; on the other hand, in a few cases the variance in guild proportion was greater than expected under the null assumptions. Other studies on ant functional group classification are partially supported by our quantitative morphological analysis. Our results, however, imply that there are more compartments than indicated in previous models, particularly among cryptic species (confined to soil and litter) and tropical climate specialists. We argue that a general null model for the analysis of species association based oil morphology can reveal objectively defined groups and may thus contribute to a robust theory to explain community structure in general and have important consequences on studies of litter ant community ecology in particular.
Resumo:
procera (pro) is a tall tomato (Solanum lycopersicum) mutant carrying a point mutation in the GRAS region of the gene encoding SlDELLA, a repressor in the gibberellin (GA) signaling pathway. Consistent with the SlDELLA loss of function, pro plants display a GA-constitutive response phenotype, mimicking wild-type plants treated with GA(3). The ovaries from both nonemasculated and emasculated pro flowers had very strong parthenocarpic capacity, associated with enhanced growth of preanthesis ovaries due to more and larger cells. pro parthenocarpy is facultative because seeded fruits were obtained by manual pollination. Most pro pistils had exserted stigmas, thus preventing self-pollination, similar to wild-type pistils treated with GA(3) or auxins. However, Style2.1, a gene responsible for long styles in noncultivated tomato, may not control the enhanced style elongation of pro pistils, because its expression was not higher in pro styles and did not increase upon GA(3) application. Interestingly, a high percentage of pro flowers had meristic alterations, with one additional petal, sepal, stamen, and carpel at each of the four whorls, respectively, thus unveiling a role of SlDELLA in flower organ development. Microarray analysis showed significant changes in the transcriptome of preanthesis pro ovaries compared with the wild type, indicating that the molecular mechanism underlying the parthenocarpic capacity of pro is complex and that it is mainly associated with changes in the expression of genes involved in GA and auxin pathways. Interestingly, it was found that GA activity modulates the expression of cell division and expansion genes and an auxin signaling gene (tomato AUXIN RESPONSE FACTOR7) during fruit-set.
Resumo:
This study was conducted in order to evaluate the morphogenetic and structural characteristics of guinea grass cv. Mombasa under three post-grazing heights (intense - 30 cm, lenient - 50 cm and variable - 50 in spring-summer and 30 cm in autumn-winter) when sward light interception reached 95% during regrowth. Post-grazing heights were allocated to experimental units (0.25 ha) in a completely randomized block design with three replications. Post-grazing heights affected only leaf elongation rate and the number of live leaves. Pastures managed with variable post-grazing height showed higher leaf elongation rate in the summer of 2007. This management strategy also resulted in a higher number of live leaves. During the spring of 2006, plants showed lower leaf elongation rate, leaf appearance rate and number of live leaves, and greater phyllochron and leaf lifespan. In contrast, during the summer of 2007, the leaf appearance rate, leaf elongation rate, number of live leaves, and final leaf length were greater while phyllochron, stem elongation rate, and leaf senescence rate were lower. The management of the guinea grass cv. Mombasa with intense or variable post-grazing height throughout the year seems to represent an interesting management target, in terms of leaf appearance rate and number of live leaves.
Resumo:
Abstract Background In recent years, the growing demand for biofuels has encouraged the search for different sources of underutilized lignocellulosic feedstocks that are available in sufficient abundance to be used for sustainable biofuel production. Much attention has been focused on biomass from grass. However, large amounts of timber residues such as eucalyptus bark are available and represent a potential source for conversion to bioethanol. In the present paper, we investigate the effects of a delignification process with increasing sodium hydroxide concentrations, preceded or not by diluted acid, on the bark of two eucalyptus clones: Eucalyptus grandis (EG) and the hybrid, E. grandis x urophylla (HGU). The enzymatic digestibility and total cellulose conversion were measured, along with the effect on the composition of the solid and the liquor fractions. Barks were also assessed using Fourier-transform infrared spectroscopy (FTIR), solid-state nuclear magnetic resonance (NMR), X-Ray diffraction, and scanning electron microscopy (SEM). Results Compositional analysis revealed an increase in the cellulose content, reaching around 81% and 76% of glucose for HGU and EG, respectively, using a two-step treatment with HCl 1%, followed by 4% NaOH. Lignin removal was 84% (HGU) and 79% (EG), while the hemicellulose removal was 95% and 97% for HGU and EG, respectively. However, when we applied a one-step treatment, with 4% NaOH, higher hydrolysis efficiencies were found after 48 h for both clones, reaching almost 100% for HGU and 80% for EG, in spite of the lower lignin and hemicellulose removal. Total cellulose conversion increased from 5% and 7% to around 65% for HGU and 59% for EG. NMR and FTIR provided important insight into the lignin and hemicellulose removal and SEM studies shed light on the cell-wall unstructuring after pretreatment and lignin migration and precipitation on the fibers surface, which explain the different hydrolysis rates found for the clones. Conclusion Our results show that the single step alkaline pretreatment improves the enzymatic digestibility of Eucalyptus bark. Furthermore, the chemical and physical methods combined in this study provide a better comprehension of the pretreatment effects on cell-wall and the factors that influence enzymatic digestibility of this forest residue.
Resumo:
The objective of this research was to assess morphogenetic and structural characteristics of tillers of guinea grass cv. Tanzania at different ages. The pastures of guinea grass were managed in six pasture conditions related to the combination of three frequencies (90, 95, and 99% light interception) and two post-grazing heights (25 and 50 cm). In these six pastures conditions, three tiller ages were evaluated (young, mature, and old). The design was of completely randomized block with three replications. Young tillers exhibited higher leaf appearance rate and leaf elongation rate and, consequently, higher final leaf length and number of live leaves than mature and old tillers, regardless of the pasture condition. On pastures managed with 90 or 95% light interception associated with a post-grazing height of 25 cm, old tillers presented longer leaf lifespan than young and mature ones. There is a progressive reduction in the vigor of growth of pastures of guinea grass cv. Tanzania with advancing tiller age.