2 resultados para Goma guar

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

Introduction: Prebiotics positively affect gut microbiota composition, thus improving gut function. These properties may be useful for the treatment of constipation. Objectives: This study assessed the tolerance and effectiveness of a prebiotic inulin/partially hydrolyzed guar gum mixture (I-PHGG) for the treatment of constipation in females, as well as its influence on the composition of intestinal microbiota and production of short chain fatty acids. Methods: Our study enrolled 60 constipated female health worker volunteers. Participants reported less than 3 bowel movements per week. Volunteers were randomized to treatment with prebiotic or placebo. Treatment consisted of 3 weeks supplementation with 15 g/d I-PHGG (fiber group) or maltodextrin (placebo group). Abdominal discomfort, flatulence, stool consistency, and bowel movements were evaluated by a recorded daily questionnaire and a weekly interview. Changes in fecal bacterial population and short chain fatty acids were assessed by real-time PCR and gas chromatography, respectively. Results: There was an increased frequency of weekly bowel movements and patient satisfaction in both the fiber and placebo groups with no significant differences. Total Clostridium sp significantly decreased in the fiber group (p = 0.046) and increased in the placebo group (p = 0.047). There were no changes in fecal short chain fatty acid profile. Conclusions: Consumption of I-PHGG produced clinical results comparable to placebo in constipated females, but had additional protective effects on gut rnicrobiota by decreasing the amount of pathological bacteria of the Clostridium genera.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Objective: To evaluate the effect of different chewing gum brands on the salivary pH of children with primary dentition. Method: Forty children were selected and assigned to four groups: control (no chewing gum); sugarless chewing gum; chewing gum with casein phosphopeptide-amorphous calcium phosphate; and chewing gum with xylitol. The first saliva collection was made after supervised tooth brushing for stabilization of the oral pH. Next, all children were instructed to drink slowly 100 mL of a cola-based soft drink (Coca-Cola®) and a new saliva collection was made 10 min later. Then, each group chewed on the chewing gum for 5 min and discarded it after this time. Saliva was collected again at 5, 10 and 15 min intervals after start using the chewing gum. Measurement of salivary pH was made with colorimetric test papers and a digital pH-meter. Data were analyzed statistically by analysis of variance and Tukey’s test at a 5% significance level. Results: The use of chewing gums accelerated the increase of salivary pH to considerably alkaline levels after consumption of an acidic beverage, especially within the first minutes. The highest levels were obtained in the groups of children that used chewing gums containing xylitol and casein phosphopeptide-amorphous calcium phosphate. Conclusion: Children that used the chewing gums after ingestion of an acidic soft drink presented an increase in salivary pH, with the best results in the groups that used chewing gums containing casein phosphopeptide-amorphous calcium phosphate and xylitol.