25 resultados para Gold mineralization
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Amazonian gold mining activity results in human exposure to mercury vapor. We evaluated the visual system of two Amazonian gold miners (29 and 37 years old) by recording the transient pattern electroretinogram (tPERG) and transient pattern visual evoked potential (tPVEP). We compared these results with those obtained from a regional group of control subjects. For both tPERG and tPVEP, checkerboards with 0.5 or 2 cycles per degree (cpd) of spatial frequency were presented in a 16 degrees squared area, 100% Michelson contrast, 50cd/m(2) mean luminance, and 1 Hz square-wave pattern-reversal presentation. Two averaged waveforms (n = 240 sweeps, Is each) were monocularly obtained for each subject in each condition. Both eyes were monocularly tested only in gold miners. Normative data were calculated using a final pooled waveforin with 480 sweeps. The first gold miner, LCS, had normal tPERG responses. The second one, RNP, showed low tPERG (P50 component) amplitudes at 0.5cpd for both eyes, outside the normative data, and absence of response at 2 cpd for his right eye. Delayed tPVEP responses (P 100 component) were found at 2 cpd for LCS but the implicit times were inside the normative data. Subject RNP also showed delayed tPVEP responses (all components), but only the implicit time obtained with his right eye was outside the normative data at 2cpd. We conclude that mercury exposure levels found in the Amazon gold miners is high enough to damage the visual system and can be assessed by non-invasive electrophysiological techniques. (C) 2007 Elsevier Inc. All rights reserved.
Resumo:
Gold nanoparticles (Au-NPs) were deposited on single layer graphene (SLG) and few layers graphene (FLG) by applying the gas aggregation technique, previously adapted to a 4-gun commercial magnetron sputtering system. The samples were supported on SiO2 (280 nm)/Si substrates, and the influence of the applied DC power and deposition times on the nanoparticle-graphene system was investigated by Confocal Raman Microscopy. Analysis of the G and 2D bands of the Raman spectra shows that the integrated intensity ratio (I-2D/I-G) was higher for SLG than for FLG. For the samples produced using a sputtering power of 30W, the intensity (peak height) of the G and 2D bands increased with the deposition time, whereas for those produced applying 60W the peak heights of the G and 2D bands decreased with the deposition time. This behaviour was ascribed to the formation of larger Au-NPs aggregates in the last case. A significant increase of the Full Width Half Maximum (FWHM) of the G band for SLG and FLG was also observed as a function of the DC power and deposition time. Surprisingly, the fine details of the Raman spectra revealed an unintentional doping of SLG and FLG accompanying the increase of size and aggregation of the Au-NPs. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
In this paper we report a simple and environmentally friendly synthesis of gold nanoparticles (AuNps) and their electrocatalytic activity for borohydride oxidation reaction (BOR). Ultraviolet spectroscopy (UV- vis) and transmission electron microscopy (TEM) confirmed the formation of poly(vinyl pyrrolidone)protected colloidal AuNps through direct reduction of Au3+ by glycerol in alkaline medium at room temperature. For the BOR tests the AuNps were directly produced onto carbon to yield the Au/C catalyst. Levich plots revealed that the process occured via 7.2 electrons, therefore near the theoretical value of 8 electrons. When compared to bulk Au, the gold nanoparticles presented enhanced catalytic properties since the onset potential for BOR was shifted 200 mV towards negative potentials. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
DETERMINATION OF KINETIC AND THERMODYNAMIC PARAMETERS OF L-CYSTEINE ADSORPTION ONTO GOLD BY THE QCM TECHNIQUE. This article discusses the adsorption kinetics of a L-cysteine monolayer onto a gold surface by means of information obtained through the QCM technique. The results indicate that the adsorption process is rapid and follows the Langmuir isotherm, in which adsorption and desorption are considered. From these measurements the following parameter values were obtained: k(d) = (4.2 +/- 0.4) x 10(-3) s(-1), k(a) = 75 +/- 6 M-1 s(-1), K-eq=(1.8 +/- 0.3) x 10(4) M-1 and Delta G(ads) = -(5.8 +/- 0.2) kcal mol(-1).
Resumo:
The structure of gold-platinum nanoparticles is heavily debated as theoretical calculations predict core-shell particles, whereas x-ray diffraction experiments frequently detect randomly mixed alloys. By calculating the structure of gold-platinum nanoparticles with diameters of up to approximate to 3.5 nm and simulating their x-ray diffraction patterns, we show that these seemingly opposing findings need not be in contradiction: Shells of gold are hardly visible in usual x-ray scattering, and the interpretation of Vegard's law is ambiguous on the nanoscale. DOI: 10.1103/PhysRevB.86.241403
Resumo:
We describe work in which gold nanoparticles were formed in diamond-like carbon (DLC), thereby generating a Au-DLC nanocomposite. A high-quality, hydrogen-free DLC thin film was formed by filtered vacuum arc plasma deposition, into which gold nanoparticles were introduced using two different methods. The first method was gold ion implantation into the DLC film at a number of decreasing ion energies, distributing the gold over a controllable depth range within the DLC. The second method was co-deposition of gold and carbon, using two separate vacuum arc plasma guns with suitably interleaved repetitive pulsing. Transmission electron microscope images show that the size of the gold nanoparticles obtained by ion implantation is 3-5 nm. For the Au-DLC composite obtained by co-deposition, there were two different nanoparticle sizes, most about 2 nm with some 6-7 nm. Raman spectroscopy indicates that the implanted sample contains a smaller fraction of sp(3) bonding for the DLC, demonstrating that some sp(3) bonds are destroyed by the gold implantation. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4757029]
Resumo:
This manuscript reports on the fabrication of plasmonic substrates using cathodic arc plasma ion implantation, in addition to their performance as SERS substrates. The technique allows for the incorporation of a wide layer of metallic nanoparticles into a polymer matrix, such as PMMA. The ability to pattern different structures using the PMMA matrix is one of the main advantages of the fabrication method. This opens up new possibilities for obtaining tailored substrates with enhanced performance for SERS and other surface-enhanced spectroscopies, as well as for exploring the basic physics of patterned metal nanostructures. The architecture of the SERS-active substrate was varied using three adsorption strategies for incorporating a laser dye (rhodamine): alongside the nanoparticles into the polymer matrix, during the polymer cure and within nanoholes lithographed on the polymer. As a proof-of-concept, we obtained the SERS spectra of rhodamine for the three types of substrates. The hypothesis of incorporation of rhodamine molecules into the polymer matrix during the cathodic arc plasma ion implantation was supported by FDTD (Finite-Difference Time-Domain) simulations. In the case of arrays of nanoholes, rhodamine molecules could be adsorbed directly on the gold surface, then yielding a well-resolved SERS spectrum for a small amount of analyte owing to the short-range interactions and the large longitudinal field component inside the nanoholes. The results shown here demonstrate that the approach based on ion implantation can be adapted to produce reproducible tailored substrates for SERS and other surface-enhanced spectroscopies.
Resumo:
We describe a systematic investigation by the discrete dipole approximation on the optical properties of silver (Ag) and gold (Au) nanocubes as a function of the edge length in the 20-100 nm range. Our results showed that, as the nanocube size increased, the plasmon resonance modes shifted to higher wavelengths, the contribution from scattering to the extinction increased, and the quadrupole modes became more intense in the spectra. The electric field amplitudes at the surface of the nanocubes were calculated considering 514, 633 and 785 nm as the excitation wavelengths. While Ag nanocubes displayed the highest electric field amplitudes (vertical bar E vertical bar(max)) when excited at 514 nm, the Au nanocubes displayed higher vertical bar E vertical bar(max) values than Ag, for all sizes investigated, when the excitation wavelength was either 633 or 785 nm. The variations in vertical bar E vertical bar(max) as a function of size for both Ag and Au nanocubes could be explained based on the relative position of the surface plasmon resonance peak relative to the wavelength of the incoming electromagnetic wave. Our results show that not only size and composition, but also the excitation wavelength, can play an important role over the maximum near-field amplitudes values generated at the surface of the nanocubes.
Resumo:
Engineered nanomaterials have been extensively applied as active materials for technological applications. Since the impact of these nanomaterials on health and environment remains undefined, research on their possible toxic effects has attracted considerable attention. It is known that in humans, for example, the primary site of gold nanoparticles (AuNps) accumulation is the liver. The latter has motivated research regarding the use of AuNps for cancer therapy, since specific organs can be target upon appropriate functionalization of specific nanoparticles. In this study, we investigate the geno and cytotoxicity of two types of AuNps against human hepatocellular carcinoma cells (HepG2) and peripheral blood mononuclear cells (PBMC) from healthy human volunteers. The cells were incubated in the presence of different concentrations of AuNps capped with either sodium citrate or polyamidoamine dendrimers (PAMAM). Our results suggest that both types of AuNps interact with HepG2 cells and PBMC and may exhibit in vitro geno and cytotoxicity even at very low concentrations. In addition, the PBMC were less sensitive to DNA damage toxicity effects than cancer HepG2 cells upon exposure to AuNps. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Magnetic and catalytic gold nanoparticles were electrodeposited through potential pulse on dendrimer-carbon nanotube layer-by-layer (LbL) films. A plasmon absorption band at about 550 nm revealed the presence of nanoscale gold in the film. The location of the Au nanoparticles in the film was clearly observed by selecting the magnetic force microscopy mode. To our knowledge, this is the first report on the electrochemical synthesis of magnetic Au nanoparticles. In addition to the magnetic properties, the Au nanoparticles also exhibited high catalytic activity towards ethanol and glycerol oxidation in alkaline medium.
Resumo:
Gold plated surfaces are widely applied in several technical and decorative fields. The two main issues regarding the discussion on the field of precious metal coatings concern the increase in the use of thinner gold layers and 'Ni free' substrates. In order to ensure the quality of the final products, the effects of the plated surfaces on their performance require thorough and accurate research. In this paper, the corrosion resistance of gold plated nickel, copper and bronze was investigated by electrochemical methods specifically potentiodynamic polarisation and electrochemical impedance spectroscopy in phosphate buffered saline. The cytotoxicity of the gold plated substrates was also evaluated and compared. The results showed that the substrate related to the best corrosion resistance and cytotoxicity among the tested ones was bronze, and the one with the lowest performance was nickel.
Resumo:
We propose a new general Bayesian latent class model for evaluation of the performance of multiple diagnostic tests in situations in which no gold standard test exists based on a computationally intensive approach. The modeling represents an interesting and suitable alternative to models with complex structures that involve the general case of several conditionally independent diagnostic tests, covariates, and strata with different disease prevalences. The technique of stratifying the population according to different disease prevalence rates does not add further marked complexity to the modeling, but it makes the model more flexible and interpretable. To illustrate the general model proposed, we evaluate the performance of six diagnostic screening tests for Chagas disease considering some epidemiological variables. Serology at the time of donation (negative, positive, inconclusive) was considered as a factor of stratification in the model. The general model with stratification of the population performed better in comparison with its concurrents without stratification. The group formed by the testing laboratory Biomanguinhos FIOCRUZ-kit (c-ELISA and rec-ELISA) is the best option in the confirmation process by presenting false-negative rate of 0.0002% from the serial scheme. We are 100% sure that the donor is healthy when these two tests have negative results and he is chagasic when they have positive results.
Resumo:
Nanoplasmonics and metamaterials sciences are rapidly growing due to their contributions to photonic devices fabrication with applications ranging from biomedicine to photovoltaic cells. Noble metal nanoparticles incorporated into polymer matrix have great potential for such applications due to their distinctive optical properties. However, methods to indirectly incorporate metal nanoparticles into polymeric microstructures are still on demand. Here we report on the fabrication of two-photon polymerized microstructures doped with gold nanoparticles through an indirect doping process, so they do not interfere in the two-photon polymerization (2PP) process. Such microstructures present a strong emission, arising from gold nanoparticles fluorescence. The microstructures produced are potential candidates for nanoplasmonics and metamaterials devices applications and the nanoparticles production method can be applied in many samples, heated simultaneously, opening the possibility for large scale processes. (C) 2012 Optical Society of America
Resumo:
Forensic age estimation is an important element of anthropological research, as it produces one of the primary sources of data that researchers use to establish the identity of a person living or the identity of unknown bodily remains. The aim of this study was to determine if the chronology of third molar mineralization could be an accurate indicator of estimated age in a sample Brazilian population. If so, mineralization could determine the probability of an individual being 18 years or older. The study evaluated 407 panoramic radiographs of males and females from the past 5 years in order to assess the mineralization status of the mandibular third molars. The evaluation was carried out using an adaptation of Demirjian's system. The results indicated a strong correlation between chronological age and the mineralization of the mandibular third molars. The results indicated that modern Brazilian generation tends to demonstrate an earlier mandibular third molar mineralization than older Brazilian generation and people of other nationalities. Males reached developmental stages slightly earlier than females, but statistically significant differences between the sex were not found. The probability that an individual with third molar mineralization stage H had reached an age of 18 years or older was 96.8-98.6% for males and females, respectively. (C) 2011 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Background and aims Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability. Methods A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E)on soil organic matter stocks and net N mineralization. Results A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0-15 cm soil layer. Field incubations conducted every 4 weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64 kg ha(-1) yr(-1), respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization. Conclusions Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.