8 resultados para Glow discharge mass spectrum
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Lattice calculations of the QCD trace anomaly at temperatures T < 160 MeV have been shown to match hadron resonance gas model calculations, which include an exponentially rising hadron mass spectrum. In this paper we perform a more detailed comparison of the model calculations to lattice data that confirms the need for an exponentially increasing density of hadronic states. Also, we find that the lattice data is compatible with a hadron density of states that goes as rho(m) similar to m(-a) exp(m/T-H) at large m with a > 5/2 (where T-H similar to 167 MeV). With this specific subleading contribution to the density of states, heavy resonances are most likely to undergo two-body decay (instead of multiparticle decay), which facilitates their inclusion into hadron transport codes. Moreover, estimates for the shear viscosity and the shear relaxation time coefficient of the hadron resonance model computed within the excluded volume approximation suggest that these transport coefficients are sensitive to the parameters that define the hadron mass spectrum.
Resumo:
Comprehensive two-dimensional gas chromatography (GC x GC) is a powerful technique that provides excellent separation and identification of analytes in highly complex samples with considerable increase in GC peak capacities. However, since second dimension analyses are very fast, detectors with a rapid acquisition rate are required. Over the last years, quite a number of studies have discussed the potential and limitations of the combination GC x GC with a variety of quadrupole mass spectrometers. The present research focuses on the evaluation of qMS effectiveness at a 10,000-amu/s scan speed and 20-Hz scan frequency for the identification (full scan mode acquisition-TIC) and quantification (extracted ion chromatogram) of target pesticide residues in tomato samples. The following MS parameters have been evaluated: number of data points per peak, mass spectrum quality, peak skewing, and sensitivity. The validated proposed GC x GC/qMS method presented satisfactory results in terms of repeatability (coefficient of variation lower than 15%), accuracy (84-117%), and linearity (ranging from 25 to 500 ng/g), while significant enhancement in sensitivity was observed (a factor of around 10) under scan conditions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We report on the mid-rapidity mass spectrum of di-electrons and cross sections of pseudoscalar and vector mesons via e(+) e(-) decays, from root s = 200 GeV p + p collisions, measured by the large-acceptance experiment STAR at the Relativistic Heavy Ion Collider. The ratio of the di-electron continuum to the combinatorial background is larger than 10% over the entire mass range. Simulations of di-electrons from light-meson decays and heavy-flavor decays (charmonium and open charm correlation) are found to describe the data. The extracted omega -> e(+) e(-) invariant yields are consistent with previous measurements. The mid-rapidity yields (dN/dy) of phi and J/psi are extracted through their di-electron decay channels and are consistent with the previous measurements of phi -> K+ K- and J/psi -> e(+) e(-). Our results suggest a new upper limit of the branching ratio of the eta -> e(+) e(-) of 1.7 x 10(-5) at the 90% confidence level.
Resumo:
Corrosion research in steels is one of the areas in which Mossbauer spectroscopy has become a required analytical technique, since it is a powerful tool for both identifying and quantifying distinctive phases (which contain Fe) with accuracy. In this manuscript, this technique was used to the study of corrosion resistance of plasma nitrided AISI 316L samples in the presence of chloride anions. Plasma nitriding has been carried out using dc glow-discharge, nitriding treatments, in medium of 80 vol.% H-2 and 20 vol.% N-2, at 673 K, and at different time intervals: 2, 4, and 7 h. Treated samples were characterized by means of phase composition and morphological analysis, and electrochemical tests in NaCl aerated solution in order to investigate the influence of treatment time on the microstructure and the corrosion resistance, proved by conversion electron Mossbauer spectroscopy (CEMS), glancing angle X-ray diffraction (GAXRD), scanning electron microscopy (SEM) and potentiodynamic polarization. A modified layer of about 8 gin was observed for all the nitrided samples, independently of the nitriding time. A metastable phase, S phase or gamma(N), was produced. It seems to be correlated with gamma`-Fe-4 N phase. If the gamma(N) fraction decreases, the gamma` fraction increases. The gamma(N) magnetic nature was analyzed. When the nitriding time increases, the results indicate that there is a significant reduction in the relative fraction of the magnetic gamma(N) (in) phase. In contrast, the paramagnetic gamma(N) (p) phase increases. The GAXRD analysis confirms the Mossbauer results, and it also indicates CrN traces for the sample nitrided for 7 h. Corrosion results demonstrate that time in the plasma nitriding treatment plays an important role for the corrosion resistance. The sample treated for 4 h showed the best result of corrosion resistance. It seems that the epsilon/gamma` fraction ratio plays an important role in thin corrosion resistance since this sample shows the maximum value for this ratio. (c) 2008 Published by Elsevier B.V.
Resumo:
The self-consistency of a thermodynamical theory for hadronic systems based on the non-extensive statistics is investigated. We show that it is possible to obtain a self-consistent theory according to the asymptotic bootstrap principle if the mass spectrum and the energy density increase q-exponentially. A direct consequence is the existence of a limiting effective temperature for the hadronic system. We show that this result is in agreement with experiments. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The ALICE experiment has measured low-mass dimuon production in pp collisions at root s = 7 TeV in the dimuon rapidity region 2.5 < y < 4. The observed dimuon mass spectrum is described as a superposition of resonance decays (eta, rho, omega, eta', phi) into muons and semi-leptonic decays of charmed mesons. The measured production cross sections for omega and phi are sigma(omega)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 5.28 +/- 0.54(stat) +/- 0.49(syst) mb and sigma(phi)(1 < p(t) < 5 GeV/c. 2.5 < y < 4) = 0.940 +/- 0.084(stat) +/- 0.076(syst) mb. The differential cross sections d(2)sigma/dy dp(t) are extracted as a function of p(t) for omega and phi. The ratio between the rho and omega cross section is obtained. Results for the phi are compared with other measurements at the same energy and with predictions by models. (C) 2012 CERN. Published by Elsevier B.V. All rights reserved.
Resumo:
The Rio de la Plata waters form a low salinity tongue that affects the circulation, stratification and the distributions of nutrients and biological species over a wide extent of the adjacent continental shelf. The plume of coastal waters presents a seasonal meridional displacement reaching lower latitudes (28,S) during austral winter and 32 degrees S during summer. Historical data suggests that the wind causes the alongshore shift, with southwesterly (SW) winds forcing the plume to lower latitudes in winter while summer dominant northeasterly (NE) winds force its southward retreat. To establish the connection between wind and outflow variations on the distribution of the coastal waters, we conducted two quasi-synoptic surveys in the region of Plata influence on the continental shelf and slope of southeastern South America, between Mar del Plata, Argentina and the northern coast of Santa Catarina, Brazil. We observed that: (A) SW winds dominating in winter force the northward spreading of the plume to low latitudes even during low river discharge periods; (B) NE winds displace the plume southward and spread the low salinity waters offshore over the entire width of the continental shelf east of the Plata estuary. The southward retreat of the plume in summer leads to a volume decrease of low salinity waters over the shelf. This volume is compensated by an increase of Tropical waters, which dominate the northern shelf. The subsurface transition between Subantarctic and Subtropical Shelf Waters, the Subtropical Shelf Front, and the subsurface water mass distribution, however, present minor seasonal variations. Along shore winds also influence the dynamics and water mass variations along the continental shelf area. In areas under the influence of river discharge, Subtropical Shelf Waters are kept away from the coastal region. When low salinity waters retreat southward, NE winds induce a coastal upwelling system near Santa Marta Cape. In summer, solar radiation promotes the establishment of a strong thermocline that increases buoyancy and further enhances the offshore displacement of low salinity waters under the action of NE winds. (C) 2008 Elsevier Ltd. All rights reserved.
Resumo:
We consider general d-dimensional lattice ferromagnetic spin systems with nearest neighbor interactions in the high temperature region ('beta' << 1). Each model is characterized by a single site apriori spin distribution taken to be even. We also take the parameter 'alfa' = ('S POT.4') - 3 '(S POT.2') POT.2' > 0, i.e. in the region which we call Gaussian subjugation, where ('S POT.K') denotes the kth moment of the apriori distribution. Associated with the model is a lattice quantum field theory known to contain a particle of asymptotic mass -ln 'beta' and a bound state below the two-particle threshold. We develop a 'beta' analytic perturbation theory for the binding energy of this bound state. As a key ingredient in obtaining our result we show that the Fourier transform of the two-point function is a meromorphic function, with a simple pole, in a suitable complex spectral parameter and the coefficients of its Laurent expansion are analytic in 'beta'.