29 resultados para Globular-clusters
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Oxygen abundances of 67 dwarf stars in the metallicity range -1.6 < [Fe/H] < -0.4 are derived from a non-LTE analysis of the 777 nm O I triplet lines. These stars have precise atmospheric parameters measured by Nissen and Schuster, who find that they separate into three groups based on their kinematics and alpha-element (Mg, Si, Ca, Ti) abundances: thick disk, high-alpha halo, and low-alpha halo. We find the oxygen abundance trends of thick-disk and high-alpha halo stars very similar. The low-alpha stars show a larger star-to-star scatter in [O/Fe] at a given [Fe/H] and have systematically lower oxygen abundances compared to the other two groups. Thus, we find the behavior of oxygen abundances in these groups of stars similar to that of the a elements. We use previously published oxygen abundance data of disk and very metal-poor halo stars to present an overall view (-2.3 < [Fe/H] < +0.3) of oxygen abundance trends of stars in the solar neighborhood. Two field halo dwarf stars stand out in their O and Na abundances. Both G53-41 and G150-40 have very low oxygen and very high sodium abundances, which are key signatures of the abundance anomalies observed in globular cluster (GC) stars. Therefore, they are likely field halo stars born in GCs. If true, we estimate that at least 3% +/- 2% of the local field metal-poor star population was born in GCs.
Resumo:
Well determined radial velocities and abundances are essential for analyzing the properties of the globular cluster system of the Milky Way. However more than 50% of these clusters have no spectroscopic measure of their metallicity. In this context, this work provides new radial velocities and abundances for twenty Milky Way globular clusters which lack or have poorly known values for these quantities. The radial velocities and abundances are derived from spectra obtained at the Ca II triplet using the FORS2 imager and spectrograph at the VLT, calibrated with spectra of red giants in a number of clusters with well determined abundances. For about half of the clusters in our sample we present significant revisions of the existing velocities or abundances, or both. We also confirm the existence of a sizable abundance spread in the globular cluster M 54, which lies at the center of the Sagittarius dwarf galaxy. In addition evidence is provided for the existence of a small intrinsic internal abundance spread (sigma[Fe/H](int) approximate to 0.11-0.14 dex, similar to that of M 54) in the luminous distant globular cluster NGC 5824. This cluster thus joins the small number of Galactic globular clusters known to possess internal metallicity ([Fe/H]) spreads.
Resumo:
This paper presents further results from our spectroscopic study of the globular cluster (GC) system of the group elliptical NGC 3923. From observations made with the GMOS instrument on the Gemini South Telescope, an additional 50 GC and ultra-compact dwarf (UCD) candidates have been spectroscopically confirmed as members of the NGC 3923 system. When the recessional velocities of these GCs are combined with the 29 GC velocities reported previously, a total sample of 79 GC/UCD velocities is produced. This sample extends to over 6 arcmin (>6 R-e similar to 30 kpc) from the centre of NGC 3923 and is used to study the dynamics of the GC system and the dark matter content of NGC 3923. It is found that the GC system of NGC 3923 displays no appreciable rotation, and that the projected velocity dispersion is constant with radius within the uncertainties. The velocity dispersion profiles of the integrated light and GC system of NGC 3923 are indistinguishable over the region in which they overlap. We find some evidence that the diffuse light and GCs of NGC 3923 have radially biased orbits within similar to 130 arcsec. The application of axisymmetric orbit-based models to the GC and integrated light velocity dispersion profiles demonstrates that a significant increase in the mass-to-light ratio (from M/L-V = 8 to 26) at large galactocentric radii is required to explain this observation. We therefore confirm the presence of a dark matter halo in NGC 3923. We find that dark matter comprises 17.5(-4.5)(+7.3) per cent of the mass within 1 R-e, 41.2(-10.6)(+18.2) per cent within 2 R-e and 75.6(-16.8)(+15.4) per cent within the radius of our last kinematic tracer at 6.9 R-e. The total dynamical mass within this radius is found to be 1.5(-0.25)(+0.4) x 10(12) M-circle dot. In common with other studies of large ellipticals, we find that our derived dynamical mass profile is consistently higher than that derived by X-ray observations, by a factor of around 2.
Resumo:
We employ optical and near-infrared photometry to study the stars in the direction of the star cluster candidate Kronberger 49. The optical color-magnitude diagrams (V, I, and Gunn z photometry obtained with the Galileo Telescope) are tight and present evidence of a main-sequence turnoff. We may be dealing with a low-mass, metal-rich globular cluster located in the bulge at a distance from the Sun of d(circle dot) = 8 +/- 1 kpc. Alternatively, it may be a dust hole through which we are sampling the bulge stellar population affected by a very low amount of differential reddening.
Resumo:
Context. Recent studies have confirmed the long standing suspicion that M 22 shares a metallicity spread and complex chemical enrichment history similar to that observed in omega Cen. M 22 is among the most massive Galactic globular clusters and its color-magnitude diagram and chemical abundances reveal the existence of sub-populations. Aims. To further constrain the chemical diversity of M 22, necessary to interpret its nucleosynthetic history, we seek to measure relative abundance ratios of key elements (carbon, nitrogen, oxygen, and fluorine) best studied, or only available, using high-resolution spectra at infrared wavelengths. Methods. High-resolution (R = 50 000) and high S/N infrared spectra were acquired of nine red giant stars with Phoenix at the Gemini-South telescope. Chemical abundances were calculated through a standard 1D local thermodynamic equilibrium analysis using Kurucz model atmospheres. Results. We derive [Fe/H] = -1.87 to -1.44, confirming at infrared wavelengths that M 22 does present a [Fe/H] spread. We also find large C and N abundance spreads, which confirm previous results in the literature but based on a smaller sample. Our results show a spread in A(C+N+O) of similar to 0.7 dex. Similar to mono-metallic globular clusters, M 22 presents a strong [Na/Fe]-[O/Fe] anticorrelation as derived from Na and CO lines in the K band. For the first time we recover F abundances in M 22 and find that it exhibits a 0.6 dex variation. We find tentative evidence for a flatter A(F)-A(O) relation compared to higher metallicity globular clusters. Conclusions. Our study confirms and expands upon the chemical diversity seen in this complex stellar system. All elements studied to date show large abundance spreads which require contributions from both massive and low mass stars.
Resumo:
Deep Galileo (Telescopio Nazionale Galileo) B, V and I images of Segue 3, reaching V ∼ 25, reveal that it is the youngest globular cluster known so far in the Galaxy. A young age of 3.2 Gyr is found, differently from a previous estimate of 12 Gyr. It also appears to be moderately metal rich with [Fe/H] ∼ −0.8, rather than [Fe/H] ∼ −1.7, as previously suggested by Fadely et al. A main difference in the age derivation relative to Fadely et al. comes from the consideration of subgiant branch stars in the isochrone fitting. A deduced distance of d⊙ = 29.1 kpc is compatible with the outer halo location of other low luminosity globular clusters.
Resumo:
Aims: This study aimed to classify alcohol-dependent outpatients on the basis of clinical factors and to verify if the resulting types show different treatment retention. Methods: The sample comprised 332 alcoholics that were enrolled in three different pharmacological trials carried out at Sao Paulo University, Brazil. Based on four clinical factors problem drinking onset age, familial alcoholism, alcohol dependence severity, and depression - K-means cluster analysis was performed by using the average silhouette width to determine the number of clusters. A direct logistic regression was performed to analyze the influence of clusters, medication groups, and Alcoholics Anonymous ( AA) attendance in treatment retention. Results: Two clusters were delineated. The cluster characterized by earlier onset age, more familial alcoholism, higher alcoholism severity, and less depression symptoms showed a higher chance of discontinuing the treatment, independently of medications used and AA attendance. Participation in AA was significantly related to treatment retention. Discussion: Health services should broaden the scope of services offered to meet heterogeneous needs of clients, and identify treatment practices and therapists which improve retention. Information about patients' characteristics linked to dropout should be used to make treatment programs more responsive and attractive, combining pharmacological agents with more intensive and diversified psychosocial interventions. Copyright (C) 2012 S. Karger AG, Basel
Resumo:
Objective The Brazilian National Hansens Disease Control Program recently identified clusters with high disease transmission. Herein, we present different spatial analytical approaches to define highly vulnerable areas in one of these clusters. Method The study area included 373 municipalities in the four Brazilian states Maranha o, Para ', Tocantins and Piaui '. Spatial analysis was based on municipalities as the observation unit, considering the following disease indicators: (i) rate of new cases / 100 000 population, (ii) rate of cases < 15 years / 100 000 population, (iii) new cases with grade-2 disability / 100 000 population and (iv) proportion of new cases with grade-2 disabilities. We performed descriptive spatial analysis, local empirical Bayesian analysis and spatial scan statistic. Results A total of 254 (68.0%) municipalities were classified as hyperendemic (mean annual detection rates > 40 cases / 100 000 inhabitants). There was a concentration of municipalities with higher detection rates in Para ' and in the center of Maranha o. Spatial scan statistic identified 23 likely clusters of new leprosy case detection rates, most of them localized in these two states. These clusters included only 32% of the total population, but 55.4% of new leprosy cases. We also identified 16 significant clusters for the detection rate < 15 years and 11 likely clusters of new cases with grade-2. Several clusters of new cases with grade-2 / population overlap with those of new cases detection and detection of children < 15 years of age. The proportion of new cases with grade-2 did not reveal any significant clusters. Conclusions Several municipality clusters for high leprosy transmission and late diagnosis were identified in an endemic area using different statistical approaches. Spatial scan statistic is adequate to validate and confirm high-risk leprosy areas for transmission and late diagnosis, identified using descriptive spatial analysis and using local empirical Bayesian method. National and State leprosy control programs urgently need to intensify control actions in these highly vulnerable municipalities.
Resumo:
A general strategy for the assembly of dendrimeric metallo-cluster species based on tritopic trinuclear ruthenium acetate complexes is demonstrated. First, a central core consisting of a [Ru3O(CH3COO)(6)(TPEB)(3)]PF6 complex (G0), where TPEB is the tripodal 1,3,5-tri-4-pyridyl-1,2-ethenylbenzene ligand, was synthesized and then reacted with the end-capping complex [Ru3O(CH3COO)(6)(py)(2)(MeOH)]PF6, thus composing the first generation shell of a dendrimer encompassing twenty-one ruthenium ions (G1). The core and dendrimeric complexes were characterized by elemental analysis, UV-Vis, H-1 NMR, ESI-MS spectrometry and Differential pulse voltammetry. All results were consistent with the structure of that multinuclear cationic dendrimeric species. The isotopologic profile of daughter fragments and the strength of the metal-ligand bonds were carefully investigated providing the fragmentation pathway for the metallo-dendrimer upon ESI-MS dissociation conditions. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
We present an analysis of observations made with the Arcminute Microkelvin Imager (AMI) and the CanadaFranceHawaii Telescope (CFHT) of six galaxy clusters in a redshift range of 0.160.41. The cluster gas is modelled using the SunyaevZeldovich (SZ) data provided by AMI, while the total mass is modelled using the lensing data from the CFHT. In this paper, we (i) find very good agreement between SZ measurements (assuming large-scale virialization and a gas-fraction prior) and lensing measurements of the total cluster masses out to r200; (ii) perform the first multiple-component weak-lensing analysis of A115; (iii) confirm the unusual separation between the gas and mass components in A1914 and (iv) jointly analyse the SZ and lensing data for the relaxed cluster A611, confirming our use of a simulation-derived masstemperature relation for parametrizing measurements of the SZ effect.
Resumo:
We present a new method to quantify substructures in clusters of galaxies, based on the analysis of the intensity of structures. This analysis is done in a residual image that is the result of the subtraction of a surface brightness model, obtained by fitting a two-dimensional analytical model (beta-model or Sersic profile) with elliptical symmetry, from the X-ray image. Our method is applied to 34 clusters observed by the Chandra Space Telescope that are in the redshift range z is an element of [0.02, 0.2] and have a signal-to-noise ratio (S/N) greater than 100. We present the calibration of the method and the relations between the substructure level with physical quantities, such as the mass, X-ray luminosity, temperature, and cluster redshift. We use our method to separate the clusters in two sub-samples of high-and low-substructure levels. We conclude, using Monte Carlo simulations, that the method recuperates very well the true amount of substructure for small angular core radii clusters (with respect to the whole image size) and good S/N observations. We find no evidence of correlation between the substructure level and physical properties of the clusters such as gas temperature, X-ray luminosity, and redshift; however, analysis suggest a trend between the substructure level and cluster mass. The scaling relations for the two sub-samples (high-and low-substructure level clusters) are different (they present an offset, i. e., given a fixed mass or temperature, low-substructure clusters tend to be more X-ray luminous), which is an important result for cosmological tests using the mass-luminosity relation to obtain the cluster mass function, since they rely on the assumption that clusters do not present different scaling relations according to their dynamical state.
Resumo:
The physical properties of small rhodium clusters, Rh-n, have been in debate due to the shortcomings of density functional theory (DFT). To help in the solution of those problems, we obtained a set of putative lowest energy structures for small Rh-n (n = 2-15) clusters employing hybrid-DFT and the generalized gradient approximation (GGA). For n = 2-6, both hybrid and GGA functionals yield similar ground-state structures (compact), however, hybrid favors compact structures for n = 7-15, while GGA favors open structures based on simple cubic motifs. Thus, experimental results are crucial to indicate the correct ground-state structures, however, we found that a unique set of structures (compact or open) is unable to explain all available experimental data. For example, the GGA structures (open) yield total magnetic moments in excellent agreement with experimental data, while hybrid structures (compact) have larger magnetic moments compared with experiments due to the increased localization of the 4d states. Thus, we would conclude that GGA provides a better description of the Rh-n clusters, however, a recent experimental-theoretical study [ Harding et al., J. Chem. Phys. 133, 214304 (2010)] found that only compact structures are able to explain experimental vibrational data, while open structures cannot. Therefore, it indicates that the study of Rh-n clusters is a challenging problem and further experimental studies are required to help in the solution of this conundrum, as well as a better description of the exchange and correlation effects on the Rh n clusters using theoretical methods such as the quantum Monte Carlo method.
Resumo:
Aims. We studied four young star clusters to characterise their anomalous extinction or variable reddening and asses whether they could be due to contamination by either dense clouds or circumstellar effects. Methods. We evaluated the extinction law (R-V) by adopting two methods: (i) the use of theoretical expressions based on the colour-excess of stars with known spectral type; and (ii) the analysis of two-colour diagrams, where the slope of the observed colour distribution was compared to the normal distribution. An algorithm to reproduce the zero-age main-sequence (ZAMS) reddened colours was developed to derive the average visual extinction (A(V)) that provides the closest fit to the observational data. The structure of the clouds was evaluated by means of a statistical fractal analysis, designed to compare their geometric structure with the spatial distribution of the cluster members. Results. The cluster NGC 6530 is the only object of our sample affected by anomalous extinction. On average, the other clusters suffer normal extinction, but several of their members, mainly in NGC 2264, seem to have high R-V, probably because of circumstellar effects. The ZAMS fitting provides A(V) values that are in good agreement with those found in the literature. The fractal analysis shows that NGC 6530 has a centrally concentrated distribution of stars that differs from the substructures found in the density distribution of the cloud projected in the A(V) map, suggesting that the original cloud was changed by the cluster formation. However, the fractal dimension and statistical parameters of Berkeley 86, NGC 2244, and NGC 2264 indicate that there is a good cloud-cluster correlation, when compared to other works based on an artificial distribution of points.
Resumo:
Deutsche Forschungsgemeinschaft [SFB 858]
Resumo:
Using fixed node diffusion quantum Monte Carlo (FN-DMC) simulations and density functional theory (DFT) within the generalized gradient approximations, we calculate the total energies of the relaxed and unrelaxed neutral, cationic, and anionic aluminum clusters, Al-n (n = 1-13). From the obtained total energies, we extract the ionization potential and electron detachment energy and compare with previous theoretical and experimental results. Our results for the electronic properties from both the FN-DMC and DFT calculations are in reasonably good agreement with the available experimental data. A comparison between the FN-DMC and DFT results reveals that their differences are a few tenths of electron volt for both the ionization potential and the electron detachment energy. We also observe two distinct behaviors in the electron correlation contribution to the total energies from smaller to larger clusters, which could be assigned to the structural transition of the clusters from planar to three-dimensional occurring at n = 4 to 5.