17 resultados para Glial cells

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

70.00% 70.00%

Publicador:

Resumo:

There has been tremendous progress in understanding neural stem cell (NSC) biology, with genetic and cell biological methods identifying sequential gene expression and molecular interactions guiding NSC specification into distinct neuronal and glial populations during development. Data has emerged on the possible exploitation of NSC-based strategies to repair adult diseased brain. However, despite increased information on lineage specific transcription factors, cell-cycle regulators and epigenetic factors involved in the fate and plasticity of NSCs, understanding of extracellular cues driving the behavior of embryonic and adult NSCs is still very limited. Knowledge of factors regulating brain development is crucial in understanding the pathogenetic mechanisms of brain dysfunction. Since injury-activated repair mechanisms in adult brain often recapitulate ontogenetic events, the identification of these players will also reveal novel regenerative strategies. Here, we highlight the purinergic system as a key emerging player in the endogenous control of NSCs. Purinergic signalling molecules (ATP, UTP and adenosine) act with growth factors in regulating the synchronized proliferation, migration, differentiation and death of NSCs during brain and spinal cord development. At early stages of development, transient and time-specific release of ATP is critical for initiating eye formation; once anatomical CNS structures are defined, purinergic molecules participate in calcium-dependent neuron-glia communication controlling NSC behaviour. When development is complete, some purinergic mechanisms are silenced, but can be re-activated in adult brain after injury, suggesting a role in regeneration and self-repair. Targeting the purinergic system to develop new strategies for neurodevelopmental disorders and neurodegenerative diseases will be also discussed.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

Embryonic carcinoma cells are widely used models for studying the mechanisms of proliferation and differentiation occurring during early embryogenesis. We have now investigated how down-regulation of P2X2 and P2X7 receptor expression by RNA interference (RNAi) affects neural differentiation and phenotype specification of P19 embryonal carcinoma cells. Wild-type P19 embryonal carcinoma cells or cells stably expressing shRNAs targeting P2X2 or P2X7 receptor expression were induced to differentiate into neurons and glial cells in the presence of retinoic acid. Silencing of P2X2 receptor expression along differentiation promoted cell proliferation and an increase in the percentage of cells expressing glial-specific GFAP, while the presence of beta-3 tubulin-positive cells diminished at the same time. Proliferation induction in the presence of stable anti-P2X2 receptor RNAi points at a mechanism where glial proliferation is favored over growth arrest of progenitor cells which would allow neuronal maturation. Differently from the P2X2 receptor, inhibition of P2X7 receptor expression during neural differentiation of P19 cells resulted in a decrease in cell proliferation and GFAP expression, suggesting the need of functional P2X7 receptors for the progress of gliogenesis. The results obtained in this study indicate the importance of purinergic signaling for cell fate determination during neural differentiation, with P2X2 and P2X7 receptors promoting neurogenesis and gliogenesis, respectively. The shRNAs down-regulating P2X2 or P2X7 receptor gene expression, developed during this work, present useful tools for studying mechanisms of neural differentiation in other stem cell models. (C) 2012 ISDN. Published by Elsevier Ltd. All rights reserved.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Inaccurate wiring and synaptic pathology appear to be major hallmarks of schizophrenia. A variety of gene products involved in synaptic neurotransmission and receptor signaling are differentially expressed in brains of schizophrenia patients. However, synaptic pathology may also develop by improper expression of intra- and extra-cellular structural elements weakening synaptic stability. Therefore, we have investigated transcription of these elements in the left superior temporal gyrus of 10 schizophrenia patients and 10 healthy controls by genome-wide microarrays (Illumina). Fourteen up-regulated and 22 downregulated genes encoding structural elements were chosen from the lists of differentially regulated genes for further qRT-PCR analysis. Almost all genes confirmed by this method were downregulated. Their gene products belonged to vesicle-associated proteins, that is, synaptotagmin 6 and syntaxin 12, to cytoskeletal proteins, like myosin 6, pleckstrin, or to proteins of the extracellular matrix, such as collagens, or laminin C3. Our results underline the pivotal roles of structural genes that control formation and stabilization of pre- and post-synaptic elements or influence axon guidance in schizophrenia. The glial origin of collagen or laminin highlights the close interrelationship between neurons and glial cells in establishment and maintenance of synaptic strength and plasticity. It is hypothesized that abnormal expression of these and related genes has a major impact on the pathophysiology of schizophrenia.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

The aim of the present study was to evaluate the behavioral patterns associated with autism and the prevalence of these behaviors in males and females, to verify whether our model of lipopolysaccharide (LPS) administration represents an experimental model of autism. For this, we prenatally exposed Wistar rats to LPS (100 mu g/kg, intraperitoneally, on gestational day 9.5), which mimics infection by gram-negative bacteria. Furthermore, because the exact mechanisms by which autism develops are still unknown, we investigated the neurological mechanisms that might underlie the behavioral alterations that were observed. Because we previously had demonstrated that prenatal LPS decreases striatal dopamine (DA) and metabolite levels, the striatal dopaminergic system (tyrosine hydroxylase [TH] and DA receptors D1a and D2) and glial cells (astrocytes and microglia) were analyzed by using immunohistochemistry, immunoblotting, and real-time PCR. Our results show that prenatal LPS exposure impaired communication (ultrasonic vocalizations) in male pups and learning and memory (T-maze spontaneous alternation) in male adults, as well as inducing repetitive/restricted behavior, but did not change social interactions in either infancy (play behavior) or adulthood in females. Moreover, although the expression of DA receptors was unchanged, the experimental animals exhibited reduced striatal TH levels, indicating that reduced DA synthesis impaired the striatal dopaminergic system. The expression of glial cell markers was not increased, which suggests that prenatal LPS did not induce permanent neuroinflammation in the striatum. Together with our previous finding of social impairments in males, the present findings demonstrate that prenatal LPS induced autism-like effects and also a hypoactivation of the dopaminergic system. (c) 2012 Wiley Periodicals, Inc.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study performed the ultrastructural description of the synganglion of Rhipicephalus sanguineus males and females, aiming to contribute to the understanding of the cellular organization of this organ. The results show that the central nervous system of these individuals consists of a mass of fused nerves, named synganglion, from where nerves emerge towards several parts of the body. It is surrounded by the neural lamella, a uniform and acellular layer, constituted by repeated layers of homogeneous and finely granular material. The perineurium is just below, composed of glial cells, which extensions invaginate throughout the nervous tissue. The synganglion is internally divided into an outer cortex, which contains the cellular bodies of the neural cells and an inner neuropile. The neural cells can be classified into two types according to cell size, cytoplasm-nucleus relation, and neurosecretory activity. Type I cells are oval or spherical and present a large nucleus occupying most part of the cytoplasm, which contains few organelles. Type 2 cells are polygonal, present a great cytoplasm volume, and their nuclei are located in the cell periphery. The cytoplasm of these cells contains a well-developed rough endoplasmic reticulum, Golgi regions, mitochondria, and several neurosecretory granules. The subperineurium and the tracheal ramifications are found between the cortex and the neuropile. The latter is formed mainly by neural fibers, tracheal elements, and glial cells. The results obtained show that R. sanguineus males' and females' nervous tissue present an ultrastructural organization similar to the one described in the literature for other tick species.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background: The neural mobilization technique is a noninvasive method that has proved clinically effective in reducing pain sensitivity and consequently in improving quality of life after neuropathic pain. The present study examined the effects of neural mobilization (NM) on pain sensitivity induced by chronic constriction injury (CCI) in rats. The CCI was performed on adult male rats, submitted thereafter to 10 sessions of NM, each other day, starting 14 days after the CCI injury. Over the treatment period, animals were evaluated for nociception using behavioral tests, such as tests for allodynia and thermal and mechanical hyperalgesia. At the end of the sessions, the dorsal root ganglion (DRG) and spinal cord were analyzed using immunohistochemistry and Western blot assays for neural growth factor (NGF) and glial fibrillary acidic protein (GFAP). Results: The NM treatment induced an early reduction (from the second session) of the hyperalgesia and allodynia in CCI-injured rats, which persisted until the end of the treatment. On the other hand, only after the 4th session we observed a blockade of thermal sensitivity. Regarding cellular changes, we observed a decrease of GFAP and NGF expression after NM in the ipsilateral DRG (68% and 111%, respectively) and the decrease of only GFAP expression after NM in the lumbar spinal cord (L3-L6) (108%). Conclusions: These data provide evidence that NM treatment reverses pain symptoms in CCI-injured rats and suggest the involvement of glial cells and NGF in such an effect.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Bevacizumab has been widely used as a vascular endothelial growth factor antagonist in the treatment of retinal vasoproliferative disorders in adults and, more recently, in infants with retinopathy of prematurity. Recently, it has been proposed that vascular endothelial growth factor acts as a protective factor for neurons and glial cells, particularly in developing nervous tissue. The purpose of this study was to investigate the effects of bevacizumab on the developing retinas of juvenile rabbits. METHODS: Juvenile rabbits received bevacizumab intravitreously in one eye; the other eye acted as an untreated control. Slit-lamp and fundoscopic examinations were performed both prior to and seven days after treatment. At the same time, retina samples were analyzed using immunohistochemistry to detect autophagy and apoptosis as well as proliferation and glial reactivity. Morphometric analyses were performed, and the data were analyzed using the Mann-Whitney U test. RESULTS: No clinical abnormalities were observed in either treated or untreated eyes. However, immunohistochemical analyses revealed a reduction in the occurrence of programmed cell death and increases in both proliferation and reactivity in the bevacizumab-treated group compared with the untreated group. CONCLUSIONS: Bevacizumab appears to alter programmed cell death patterns and promote gliosis in the developing retinas of rabbits; therefore, it should be used with caution in developing eyes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Hydrocephalus is associated with reduced blood flow in periventricular white matter. To investigate hypoxic and oxidative damage in the brains of rats with hydrocephalus, kaolin was injected into the cisterna magna of newborn 7- and 21-day-old Sprague-Dawley rats, and ventricle size was assessed by magnetic resonance imaging at 7, 21, and 42 days of age. In-situ evidence of hypoxia in periventricular capillaries and glial cells was shown by pimonidazole hydrochloride binding. Biochemical assay of thiobarbituric acid reaction and immunohistochemical detection of malondialdehyde and 4-hydroxy-2-nonenal indicated the presence of lipid peroxidation in white matter. Biochemical assay of nitrite indicated increased nitric oxide production. Nitrotyrosine immunohistochemistry showed nitrosylated proteins in white matter reactive microglia and astrocytes. Activities of the antioxidant enzymes catalase and glutathione peroxidase were not increased, and altered hypoxia-inducible factor 1 alpha was not detected by quantitative reverse transcription-polymerase chain reaction. Cerebral vascular endothelial growth factor expression determined by quantitative reverse transcription-polymerase chain reaction and enzyme-linked immunosorbent assay was not changed, but vascular endothelial growth factor immunoreactivity was increased in reactive astrocytes of hydrocephalic white matter. To determine if nitric oxide synthase is involved in the pathogenesis, we induced hydrocephalus in 7-day-old wild-type and neuronal nitric oxide synthase-deficient mice. At 7 days, the wild-type and mutant mice exhibited equally severe ventriculomegaly and no behavioral differences, although increased glial fibrillary acidic protein was less in the mutant mice. We conclude that hypoxia, via peroxidation and nitrosylation, contributes to brain changes in young rodents with hydrocephalus and that compensatory mechanisms are negligible.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

This study reports on the successful use of magnetic albumin nanosphere (MAN), consisting of maghemite nanoparticles hosted by albumin-based nanosphere, to target different sites within the central nervous system (CNS). Ultrastructural analysis by transmission electron microscopy (TEM) of the material collected from the mice was performed in the time window of 30 minutes up to 30 days after administration. Evidence found that the administered MAN was initially internalized and transported by erythrocytes across the blood-brain-barrier and transferred to glial cells and neuropils before internalization by neurons, mainly in the cerebellum. We hypothesize that the efficiency of MAN in crossing the BBB with no pathological alterations is due to the synergistic effect of its two main components, the iron-based nanosized particles and the hosting albumin-based nanospheres. We found that the MAN in targeting the CNS represents an important step towards the design of nanosized materials for clinical and diagnostic applications.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

PURPOSE. Vascular endothelial growth factor (VEGF) is an important signal protein in vertebrate nervous development, promoting neurogenesis, neuronal patterning, and glial cell growth. Bevacizumab, an anti-VEGF agent, has been extensively used for controlling pathological retinal neovascularization in adult and newborn patients, although its effect on the developing retina remains largely unknown. The purpose of this study was to investigate the effect of bevacizumab on cell death, proliferation, and differentiation in newborn rat retina. METHODS. Retinal explants of sixty 2-day-old Lister hooded rats were obtained after eye enucleation and maintained in culture media with or without bevacizumab for 2 days. Immunohistochemical staining was assessed against proliferating cell nuclear antigen (PCNA, to detect cell proliferation); caspase-3 and beclin-1 (to investigate cell death); and vimentin and glial fibrillary acidic protein (GFAP, markers of glial cells). Gene expressions were quantified by real-time reverse-transcription polymerase chain reaction. Results from treatment and control groups were compared. RESULTS. No significant difference in the staining intensity (on immunohistochemistry) of PCNA, caspase-3, beclin-1, and GFAP, or in the levels of PCNA, caspase-3, beclin-1, and vimentin mRNA was observed between the groups. However, a significant increase in vimentin levels and a significant decrease in GFAP mRNA expression were observed in bevacizumab-treated retinal explants compared with controls. CONCLUSIONS. Bevacizumab did not affect cell death or proliferation in early developing rat retina but appeared to interfere with glial cell maturation by increasing vimentin levels and downregulating GFAP gene expression. Thus, we suggest anti-VEGF agents be used with caution in developing retinal tissue. (Invest Ophthalmol Vis Sci. 2012;53:7904-7911) DOI:10.1167/iovs.12-10283

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Purinergic receptors participate, in almost every cell type, in controlling metabolic activities and many physiological functions including signal transmission, proliferation and differentiation. While most of P2Y receptors induce transient elevations of intracellular calcium concentration by activation of intracellular calcium pools and forward these signals as waves which can also be transmitted into neighboring cells, P2X receptors produce calcium spikes which also include activation of voltage-operating calcium channels. P2Y and P2X receptors induce calcium transients that activate transcription factors responsible for the progress of differentiation through mediators including calmodulin and calcineurin. Expression of P2X2 as well as of P2X7 receptors increases in differentiating neurons and glial cells, respectively. Gene expression silencing assays indicate that these receptors are important for the progress of differentiation and neuronal or glial fate determination. Metabotropic receptors, mostly P2Y1 and P2Y2 subtypes, act on embryonic cells or cells at the neural progenitor stage by inducing proliferation as well as by regulation of neural differentiation through NFAT translocation. The scope of this review is to discuss the roles of purinergic receptor-induced calcium spike and wave activity and its codification in neurodevelopmental and neurodifferentiation processes.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

OBJECTIVE: Bevacizumab has been widely used as a vascular endothelial growth factor antagonist in the treatment of retinal vasoproliferative disorders in adults and, more recently, in infants with retinopathy of prematurity. Recently, it has been proposed that vascular endothelial growth factor acts as a protective factor for neurons and glial cells, particularly in developing nervous tissue. The purpose of this study was to investigate the effects of bevacizumab on the developing retinas of juvenile rabbits. METHODS: Juvenile rabbits received bevacizumab intravitreously in one eye; the other eye acted as an untreated control. Slit-lamp and fundoscopic examinations were performed both prior to and seven days after treatment. At the same time, retina samples were analyzed using immunohistochemistry to detect autophagy and apoptosis as well as proliferation and glial reactivity. Morphometric analyses were performed, and the data were analyzed using the Mann-Whitney U test. RESULTS: No clinical abnormalities were observed in either treated or untreated eyes. However, immunohistochemical analyses revealed a reduction in the occurrence of programmed cell death and increases in both proliferation and reactivity in the bevacizumab-treated group compared with the untreated group. CONCLUSIONS: Bevacizumab appears to alter programmed cell death patterns and promote gliosis in the developing retinas of rabbits; therefore, it should be used with caution in developing eyes

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Ocular enucleation induces profound morphological alterations in central visual areas. However, little is known about the response of glial cells and possible inflammatory processes in visual brain areas resulting from eye enucleation. In this study, immunoblotting and immunostaining assays revealed increased expression of astrocyte and microglia markers in the rat superior colliculus (SC) between 1 and 15 days after contralateral enucleation. A transient increase of neuronal COX-2 protein expression was also found in the SC. To evaluate the role of an anti-inflammatory drug in attenuating both COX-2 and glial cell activation, the synthetic glucocorticoid dexamethasone (DEX) was administered (1mg/kg i.p., for 3 days) to enucleated rats. Immunoblotting data revealed that DEX treatment significantly inhibited COX-2 protein expression. Postlesion immunostaining for astrocyte and microglia markers was also significantly reduced by DEX treatment. These findings suggest that the removal of retinal ganglion cell input generates inflammatory responses in central retinorecipient structures

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Background: A promising therapeutic strategy for amyotrophic lateral sclerosis (ALS) is the use of cell-based therapies that can protect motor neurons and thereby retard disease progression. We recently showed that a single large dose (25x10(6) cells) of mononuclear cells from human umbilical cord blood (MNC hUCB) administered intravenously to pre-symptomatic G93A SOD1 mice is optimal in delaying disease progression and increasing lifespan. However, this single high cell dose is impractical for clinical use. The aim of the present pre-clinical translation study was therefore to evaluate the effects of multiple low dose systemic injections of MNC hUCB cell into G93A SOD1 mice at different disease stages. Methodology/Principal Findings: Mice received weekly intravenous injections of MNC hUCB or media. Symptomatic mice received 10(6) or 2.5x10(6) cells from 13 weeks of age. A third, pre-symptomatic, group received 10(6) cells from 9 weeks of age. Control groups were media-injected G93A and mice carrying the normal hSOD1 gene. Motor function tests and various assays determined cell effects. Administered cell distribution, motor neuron counts, and glial cell densities were analyzed in mouse spinal cords. Results showed that mice receiving 10(6) cells pre-symptomatically or 2.5x10(6) cells symptomatically significantly delayed functional deterioration, increased lifespan and had higher motor neuron counts than media mice. Astrocytes and microglia were significantly reduced in all cell-treated groups. Conclusions/Significance: These results demonstrate that multiple injections of MNC hUCB cells, even beginning at the symptomatic disease stage, could benefit disease outcomes by protecting motor neurons from inflammatory effectors. This multiple cell infusion approach may promote future clinical studies.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Bradykinin is not only important for inflammation and blood pressure regulation, but also involved in neuromodulation and neuroprotection. Here we describe novel functions for bradykinin and the kinin-B2 receptor (B2BkR) in differentiation of neural stem cells. In the presence of the B2BkR antagonist HOE-140 during rat neurosphere differentiation, neuron-specific beta 3-tubulin and enolase expression was reduced together with an increase in glial protein expression, indicating that bradykinin- induced receptor activity contributes to neurogenesis. In agreement, HOE-140 affected in the same way expression levels of neural markers during neural differentiation of murine P19 and human iPS cells. Kinin-B1 receptor agonists and antagonists did not affect expression levels of neural markers, suggesting that bradykinin-mediated effects are exclusively mediated via B2BkR. Neurogenesis was augmented by bradykinin in the middle and late stages of the differentiation process. Chronic treatment with HOE-140 diminished eNOS and nNOS as well as M1-M4 muscarinic receptor expression and also affected purinergic receptor expression and activity. Neurogenesis, gliogenesis, and neural migration were altered during differentiation of neurospheres isolated from B2BkR knock-out mice. Whole mount in situ hybridization revealed the presence of B2BkR mRNA throughout the nervous system in mouse embryos, and less beta 3-tubulin and more glial proteins were expressed in developing and adult B2BkR knock-out mice brains. As a underlying transcriptional mechanism for neural fate determination, HOE-140 induced up-regulation of Notch1 and Stat3 gene expression. Because pharmacological treatments did not affect cell viability and proliferation, we conclude that bradykinin-induced signaling provides a switch for neural fate determination and specification of neurotransmitter receptor expression.