3 resultados para Gist
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Monocarboxylate transporters (MCTs) have been described to play an important role in cancer, but to date there are no reports on the significance of MCT expression in gastrointestinal stromal tumors (GISTs). The aim of the present work was to assess the value of MCT expression, as well as co-expression with the MCT chaperone CD147 in GISTs and evaluate their clinical-pathological significance. We analyzed the immunohistochemical expression of MCT1, MCT2, MCT4 and CD147 in a series of 64 GISTs molecularly characterized for KIT, PDGFRA and BRAF mutations. MCT1, MCT2 and MCT4 were highly expressed in GISTs. CD147 expression was associated with mutated KIT (p = 0.039), as well as a progressive increase in Fletcher's Risk of Malignancy (p = 0.020). Importantly, co-expression of MCT1 with CD147 was associated with low patient's overall survival (p = 0.037). These findings suggest that co-expression of MCT1 with its chaperone CD147 is involved in GISTs aggressiveness, pointing to a contribution of cancer cell metabolic adaptations in GIST development and/or progression.
Resumo:
The Er3+-Yb3+ co-doped MgAl2O4 phosphor powders have been prepared by the combustion method. The phosphor powders are well characterized by X-ray diffraction (XRD) and energy dispersive (EDX) techniques. The absorption spectrum of Er3+/Er3+-Yb3+ doped/co-doped phosphor powder has been recorded in the UV-Vis-NIR region of the electro-magnetic spectrum. The evidence for indirect pumping under 980 nm excitation of Er3+ from Yb3+ was observed in the MgAl2O4 matrix material. Electron spin resonance (ESR) studies were carried out to identify the defect centres responsible for the thermally stimulated luminescence (TSL) process in MgAl2O4:Er3+ phosphor. Three defect centres were identified in irradiated phosphor by ESR measurements which were carried out at room temperature and these were assigned to an O- ion and F+ centres. O- ion (hole centre) appears to correlate with the low temperature TSL peak at 210 A degrees C and one of the F+ centres (electron centre) is related to the high temperature peak at 460 A degrees C.
Resumo:
Tb3+ doped CaZrO3 has been prepared by an easy solution combustion synthesis method. The combustion derived powder was investigated by X-ray diffraction, Fourier-transform infrared spectrometry and scanning electron microscopy techniques. A room temperature photoluminescence study showed that the phosphors can be efficiently excited by 251 nm light with a weak emission in the blue and orange region and a strong emission in green light region. CaZrO3:Tb3+ exhibits three thermoluminescence (TL) glow peaks at 126 degrees C, 200 degrees C and 480 degrees C. Electron Spin Resonance (ESR) studies were carried out to study the defect centres induced in the phosphor by gamma irradiation and also to identify the centres responsible for the TL peaks. The room temperature ESR spectrum of irradiated phosphor appears to be a superposition of two distinct centres. One of the centres (centre I) with principal g-value 2.0233 is identified as an O- ion. Centre II with an axial symmetric g-tensor with principal values g(parallel to) = 1.9986 and g(perpendicular to) = 2.0023 is assigned to an F+ centre (singly ionised oxygen vacancy). An additional defect centre is observed during thermal annealing experiments and this centre (assigned to F+ centre) seems to originate from an F centre (oxygen vacancy with two electrons). The F centre and also the F+ centre appear to correlate with the observed high temperature TL peak in CaZrO3:Tb3+ phosphor. (c) 2012 Elsevier B.V. All rights reserved.