2 resultados para Geographical location codes

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Background The frequencies of various causes of pulmonary granulomas in pathological material are unknown, as is the influence of geographical location on aetiology. The aim of this study was to identify the causes of pulmonary granulomas in pathological specimens, to define their frequencies, and to determine whether these causes vary by geographical location. Methods 500 lung biopsies and resections containing granulomas were reviewed retrospectively by expert pulmonary pathologists from 10 institutions in seven countries. Fifty consecutive cases from each location were assigned a diagnosis based on histological features and available clinical/microbiological data. Results A specific cause was identified in 58% of cases (290/500), most commonly sarcoidosis (136, 27%) and mycobacterial or fungal infections (125, 25%). Mycobacteria were identified in 19% of cases outside the USA versus 8% within the USA. In contrast, fungi accounted for 19% cases in the USA versus 4% in other locations. Fungi were mostly detected by histology, whereas most mycobacteria were identified in cultures. In 42% of cases (210/500) an aetiology could not be determined. Conclusions Across several geographical settings, sarcoidosis and infections are the most common causes of pulmonary granulomas diagnosed in pathological specimens. Fungi are more commonly identified than mycobacteria in the USA, whereas the reverse is true in other countries. A definite aetiology cannot be demonstrated in more than a third of all cases of pulmonary granulomas, even after histological examination. These findings highlight the need to submit material for histology as well as cultures in all cases in which granulomatous disease enters the differential diagnosis.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The construction of the Agua Negra tunnels that will link Argentina and Chile under the Andes, the world's longest mountain range, opens the possibility of building the first deep underground laboratory in the Southern Hemisphere. This laboratory has the acronym ANDES (Agua Negra Deep Experiment Site) and its overburden could be as large as similar to 1.7 km of rock, or 4500 mwe, providing an excellent low background environment to study physics of rare events like the ones induced by neutrinos and/or dark matter. In this paper we investigate the physics potential of a few kiloton size liquid scintillator detector, which could be constructed in the ANDES laboratory as one of its possible scientific programs. In particular, we evaluate the impact of such a detector for the studies of geoneutrinos and Galactic supernova neutrinos, assuming a fiducial volume of 3 kilotons as a reference size. We emphasize the complementary roles of such a detector to the ones of the Northern Hemisphere neutrino facilities, given the advantages of its geographical location.