22 resultados para Geodesic band constraints
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The need for increasing the loading capacity of transmission lines in a traditional way, by replacing or reinforcement of the structures and foundations on routes crossing areas considered of permanent environmental preservation, may require additional works that alter the environment. The present rigorous environmental legislation turns these changes and substitution unfeasible. One way to increase the capacity of these lines is the use of new conductor technology. The aim of this paper is to discuss the needs for upgrading a transmission line and minimize or eliminate the damage to the environment by using special conductors. Because the aluminum conductor composite reinforced technology is relatively new and considering the lack of information related to its effective performance in practical system, there is a need to verify the behavior of these conductors through monitoring procedures.
Resumo:
Subduction zones are one of the most characteristic features of planet Earth. Convergent plate junctions exert enormous influence on the formation and recycling of continental crust, and they are also responsible for major mineral resources and earthquakes, which are of crucial importance for society. A subduction-related geologic unit containing high-pressure rocks occurs in the Barragan area (Valle del Cauca Department) on the western flank of the Central Cordillera of the Colombian Andes. Blueschists and amphibolites, serpentinized meta-ultramafic rocks, graphite-chlorite-muscovite-quartz schists, protocataclasites, and graphite-chlorite-andalusite-andesine-garnet-muscovite +/- titanite schists are exposed in this region. In spite of the petrotectonic importance of blueschists, the high-pressure metamorphism of the Central Cordillera of Colombia has been rarely studied. New geochemical data indicate that protoliths of the blueschist- and amphibolite-facies rocks possessed normal mid-ocean ridge basalt bulk compositions. Ar-40/Ar-39 geochronology for a metapelite rock associated with the blueschists shows a plateau age of similar to 120 million years. We suggest that high-P/T conditions were present from similar to 150 to 125 Ma, depending on the model of generation and exhumation considered.
Resumo:
Impact cratering has been a fundamental geological process in Earth history with major ramifications for the biosphere. The complexity of shocked and melted rocks within impact structures presents difficulties for accurate and precise radiogenic isotope age determination, hampering the assessment of the effects of an individual event in the geological record. We demonstrate the utility of a multi-chronometer approach in our study of samples from the 40 km diameter Araguainha impact structure of central Brazil. Samples of uplifted basement granite display abundant evidence of shock deformation, but U/Pb ages of shocked zircons and the Ar-40/Ar-39 ages of feldspar from the granite largely preserve the igneous crystallization and cooling history. Mixed results are obtained from in situ Ar-40/Ar-39 spot analyses of shocked igneous biotites in the granite, with deformation along kink-bands resulting in highly localized, partial resetting in these grains. Likewise, spot analyses of perlitic glass from pseudotachylitic breccia samples reflect a combination of argon inheritance from wall rock material, the age of the glass itself, and post-impact devitrification. The timing of crater formation is better assessed using samples of impact-generated melt rock where isotopic resetting is associated with textural evidence of melting and in situ crystallization. Granular aggregates of neocrystallized zircon form a cluster of ten U-Pb ages that yield a "Concordia" age of 247.8 +/- 3.8 Ma. The possibility of Pb loss from this population suggests that this is a minimum age for the impact event. The best evidence for the age of the impact comes from the U-Th-Pb dating of neocrystallized monazite and Ar-40/Ar-39 step heating of three separate populations of post-impact, inclusion-rich quartz grains that are derived from the infill of miarolitic cavities. The Pb-206/U-238 age of 254.5 +/- 3.2 Ma (2 sigma error) and Pb-208/Th-232 age of 255.2 +/- 4.8 Ma (2 sigma error) of monazite, together with the inverse, 18 point isochron age of 254 +/- 10 Ma (MSWD = 0.52) for the inclusion-rich quartz grains yield a weighted mean age of 254.7 +/- 2.5 Ma (0.99%, 2 sigma error) for the impact event. The age of the Araguainha crater overlaps with the timing of the Permo-Triassic boundary, within error, but the calculated energy released by the Araguainha impact is insufficient to be a direct cause of the global mass extinction. However, the regional effects of the Araguainha impact event in the Parana-Karoo Basin may have been substantial. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Mutualisms such as the figfig wasp mutualism are generally exploited by parasites. We demonstrate that amongst nonpollinating fig wasps (NPFWs) parasitic on Ficus citrifolia, a species of Idarnes galls flowers and another species feeds on galls induced by other wasps killing their larvae. The galling wasp inserts its ovipositor through the fig wall into the fig cavity. The ovipositor then follows a sinuous path and is introduced through the stigma and style of the flower. The egg is deposited between the integument and nucellus, in the exact location where the pollinating mutualistic wasp would have laid its egg. Gall induction is a complex process. In contrast, the path followed by the ovipositor of the other species is straightforward: attacking a larva within a developed gall poses different constraints. Shifts in feeding regime have occurred repeatedly in NPFWs. Monitoring traits associated with such repeated evolutionary shifts may help understand underlying functional constraints. (c) 2012 The Linnean Society of London, Biological Journal of the Linnean Society, 2012, 106, 114122.
Resumo:
This study aimed at analyzing the relationship between slow- and fast-alpha asymmetry within frontal cortex and the planning, execution and voluntary control of saccadic eye movements (SEM), and quantitative electroencephalography (qEEG) was recorded using a 20-channel EEG system in 12 healthy participants performing a fixed (i.e., memory-driven) and a random SEM (i.e., stimulus-driven) condition. We find main effects for SEM condition in slow- and fast-alpha asymmetry at electrodes F3-F4, which are located over premotor cortex, specifically a negative asymmetry between conditions. When analyzing electrodes F7-F8, which are located over prefrontal cortex, we found a main effect for condition in slow-alpha asymmetry, particularly a positive asymmetry between conditions. In conclusion, the present approach supports the association of slow- and fast-alpha bands with the planning and preparation of SEM, and the specific role of these sub-bands for both, the attention network and the coordination and integration of sensory information with a (oculo)-motor response. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
Semiconductor nanowhiskers (NWs) made of III-V compounds exhibit great potential for technological applications. Controlling the growth conditions, such as temperature and diameter, it is possible to alternate between zinc-blende (ZB) and wurtzite (WZ) crystalline phases, giving origin to the so called polytypism. This effect has great influence in the electronic and optical properties of the system, generating new forms of confinement to the carriers. A theoretical model capable to accurately describe electronic and optical properties in these polytypical nanostructures can be used to study and develop new kinds of nanodevices. In this study, we present the development of a wurtzite/zinc-blende polytypical model to calculate the electronic band structure of nanowhiskers based on group theory concepts and the k.p method. Although the interest is in polytypical superlattices, the proposed model was applied to a single quantum well of InP to study the physics of the wurtzite/zinc-blende polytypism. By the analysis of our results, some trends can be predicted: spatial carriers' separation, predominance of perpendicular polarization (xy plane) in the luminescence spectra, and interband transition blueshifts with strain. Also, a possible range of values for the wurtzite InP spontaneous polarization is suggested. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767511]
Resumo:
The competition between confinement potential fluctuations and band-gap renormalization (BGR) in GaAs/AlxGa1-xAs quantum wells grown on [1 0 0] and [3 1 1]A GaAs substrates is evaluated. The results clearly demonstrate the coexistence of the band-tail states filling related to potential fluctuations and the band-gap renormalization caused by an increase in the density of photogenerated carriers during the photoluminescence (PL) experiments. Both phenomena have strong influence on temperature dependence of the PL-peak energy (E-PL(T)). As the photon density increases, the E-PL can shift to either higher or lower energies, depending on the sample temperature. The temperature at which the displacement changes from a blueshift to a redshift is governed by the magnitude of the potential fluctuations and by the variation of BGR with excitation density. A simple band-tail model with a Gaussian-like distribution of the density of state was used to describe the competition between the band-tail filling and the BGR effects on E-PL(T). (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
The Hubble constant, H-0, sets the scale of the size and age of the Universe and its determination from independent methods is still worthwhile to be investigated. In this article, by using the Sunyaev-Zeldovich effect and X-ray surface brightness data from 38 galaxy clusters observed by Bonamente et al. (Astrophys J 647:25, 2006), we obtain a new estimate of H-0 in the context of a flat Lambda CDM model. There is a degeneracy on the mass density parameter (Omega(m)) which is broken by applying a joint analysis involving the baryon acoustic oscillations (BAO) as given by Sloan Digital Sky Survey. This happens because the BAO signature does not depend on H-0. Our basic finding is that a joint analysis involving these tests yield H-0 = 76.5(-3.33)(+3.35) km/s/mpc and Omega(m) = 0.27(-0.02)(+0.03). Since the hypothesis of spherical geometry assumed by Bonamente et al. is questionable, we have also compared the above results to a recent work where a sample of galaxy clusters described by an elliptical profile was used in analysis.
Resumo:
In this paper, we address the problem of defining the product mix in order to maximise a system's throughput. This problem is well known for being NP-Complete and therefore, most contributions to the topic focus on developing heuristics that are able to obtain good solutions for the problem in a short CPU time. In particular, constructive heuristics are available for the problem such as that by Fredendall and Lea, and by Aryanezhad and Komijan. We propose a new constructive heuristic based on the Theory of Constraints and the Knapsack Problem. The computational results indicate that the proposed heuristic yields better results than the existing heuristic.
Resumo:
Excesses on positron and electron fluxes-measured by ATIC and the PAMELA and Fermi-LAT telescopes-can be explained by dark matter annihilation in the Galaxy, however, it requires large boosts on the dark matter annihilation rate. There are many possible enhancement mechanisms such as the Sommerfeld effect or the existence of dark matter clumps in our halo. If enhancements on the dark matter annihilation cross section are taking place, the dark matter annihilation in the core of the Earth will be enhanced. Here we use recent results from the IceCube 40-string configuration to probe generic enhancement scenarios. We present results as a function of the dark matter-proton interaction cross section, sigma(chi p) weighted by the branching fraction into neutrinos f(nu(nu) over bar) as a function of a generic boost factor B-F, which parametrizes the expected enhancement of the annihilation rate. We find that dark matter models that require annihilation enhancements of O(100) or more and that annihilate significantly into neutrinos are excluded as an explanation for these excesses. We also determine the boost range that can be probed by the full IceCube telescope.
Resumo:
We performed ab initio calculations of the electronic structures of bulk CdSe and CdTe, and their interface band alignments on the CdSe in-plane lattice parameters. For this, we employed the LDA-1/2 self-energy correction scheme [L.G. Ferreira, M. Marques, L.K. Teles, Phys. Rev. B 78 (2008) 125116] to obtain corrected band gaps and band offsets. Our calculations include the spin-orbit effects for the bulk cases, which have shown to be of importance for the equilibrium systems and are possibly degraded in these strained semiconductors. Therefore, the SO showed reduced importance for the band alignment of this particular system. Moreover, the electronic structure calculated along the transition region across the CdSe/CdTe interface shows an interesting non-monotonic variation of the band gap in the range 0.8-1.8 eV, which may enhance the absorption of light for corresponding frequencies at the interface between these two materials in photovoltaic applications. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Introduction: The saccadic paradigm has been used to investigate specific cortical networks involving attention. The behavioral and electrophysiological investigations of the SEM contribute significantly to the understanding of attentive patterns presented of neurological and psychiatric disorders and sports performance. Objective: The current study aimed to investigate absolute alpha power changes in sensorimotor brain regions and the frontal eye fields during the execution of a saccadic task. Methods: Twelve healthy volunteers (mean age: 26.25; SD: +/- 4.13) performed a saccadic task while the electroencephalographic signal was simultaneously recorded for the cerebral cortex electrodes. The participants were instructed to follow the LEDs with their eyes, being submitted to two different task conditions: a fixed pattern versus a random pattern. Results: We found a moment main effect for the C3, C4, F3 and F4 electrodes and a condition main effect for the F3 electrode. We also found interaction between factor conditions and frontal electrodes. Conclusions: We conclude that absolute alpha power in the left frontal cortex discriminates the execution of the two stimulus presentation patterns during SEM. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
We report the first tungsten isotopic measurements in stardust silicon carbide (SiC) grains recovered from the Murchison carbonaceous chondrite. The isotopes (182,183,184,186)Wand (179,180)Hf were measured on both an aggregate (KJB fraction) and single stardust SiC grains (LS+ LU fraction) believed to have condensed in the outflows of low-mass carbon-rich asymptotic giant branch (AGB) stars with close-to-solar metallicity. The SiC aggregate shows small deviations from terrestrial (= solar) composition in the (182)W/(184)Wand (183)W/(184)Wratios, with deficits in (182)W and (183)W with respect to (184)W. The (186)W/(184)W ratio, however, shows no apparent deviation from the solar value. Tungsten isotopic measurements in single mainstream stardust SiC grains revealed lower than solar (182)W/(184)W, (183)W/(184)W, and (186)W/(184)W ratios. We have compared the SiC data with theoretical predictions of the evolution of W isotopic ratios in the envelopes of AGB stars. These ratios are affected by the slow neutron-capture process and match the SiC data regarding their (182)W/(184)W, (183)W/(184)W, and (179)Hf/(180)Hf isotopic compositions, although a small adjustment in the s-process production of (183)W is needed in order to have a better agreement between the SiC data and model predictions. The models cannot explain the (186)W/(184)W ratios observed in the SiC grains, even when the current (185)W neutron-capture cross section is increased by a factor of two. Further study is required to better assess how model uncertainties (e. g., the formation of the (13)C neutron source, the mass-loss law, the modeling of the third dredge-up, and the efficiency of the (22)Ne neutron source) may affect current s-process predictions.
Resumo:
Optical properties of intentionally disordered multiple quantum well (QW) system embedded in a wide AlGaAs parabolic well were investigated by photoluminescence (PL) measurements as functions of the laser excitation power and the temperature. The characterization of the carriers localized in the individual wells was allowed due to the artificial disorder that caused spectral separation of the photoluminescence lines emitted by different wells. We observed that the photoluminescence peak intensity from each quantum well shifted to high energy as the excitation power was increased. This blue-shift is associated with the filling of localized states in the valence band tail. We also found that the dependence of the peak intensity on the temperature is very sensitive to the excitation power. The temperature dependence of the photoluminescence peak energy from each QW was well fitted using a model that takes into account the thermal redistribution of the localized carriers. Our results demonstrate that the band tails in the studied structures are caused by alloy potential fluctuations and the band tail states dominate the emission from the peripheral wells. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4730769]
Resumo:
This paper aims to provide an improved NSGA-II (Non-Dominated Sorting Genetic Algorithm-version II) which incorporates a parameter-free self-tuning approach by reinforcement learning technique, called Non-Dominated Sorting Genetic Algorithm Based on Reinforcement Learning (NSGA-RL). The proposed method is particularly compared with the classical NSGA-II when applied to a satellite coverage problem. Furthermore, not only the optimization results are compared with results obtained by other multiobjective optimization methods, but also guarantee the advantage of no time-spending and complex parameter tuning.