3 resultados para Genetic change
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This epidemiological study was conducted using antigenic and genetic characterisation of rabies virus isolates obtained from different animal species in the southeast of Brazil from 1993 to 2007. An alteration in the epidemiological profile was observed. One hundred two samples were tested using a panel of eight monoclonal antibodies, and 94 were genetically characterised by sequencing the nucleoprotein gene. From 1993 to 1997, antigenic variant 2 (AgV-2), related to a rabies virus maintained in dog populations, was responsible for rabies cases in dogs, cats, cattle and horses. Antigenic variant 3 (AgV-3), associated with Desmodus rotundus, was detected in a few cattle samples from rural areas. From 1998 to 2007, rabies virus was detected in bats and urban pets, and four distinct variants were identified. A nucleotide similarity analysis resulted in two primary groups comprising the dog and bat antigenic variants and showing the distinct endemic cycles maintained in the different animal species in this region.
Resumo:
Plasmodium malariae is a protozoan parasite that causes malaria in humans and is genetically indistinguishable from Plasmodium brasilianum, a parasite infecting New World monkeys in Central and South America. P. malariae has a wide and patchy global distribution in tropical and subtropical regions, being found in South America, Asia, and Africa. However, little is known regarding the genetics of these parasites and the similarity between them could be because until now there are only a very few genomic sequences available from simian Plasmodium species. This study presents the first molecular epidemiological data for P. malariae and P. brasilianum from Brazil obtained from different hosts and uses them to explore the genetic diversity in relation to geographical origin and hosts. By using microsatellite genotyping, we discovered that of the 14 human samples obtained from areas of the Atlantic forest, 5 different multilocus genotypes were recorded, while in a sample from an infected mosquito from the same region a different haplotype was found. We also analyzed the longitudinal change of circulating plasmodial genetic profile in two untreated non-symptomatic patients during a 12-months interval. The circulating genotypes in the two samples from the same patient presented nearly identical multilocus haplotypes (differing by a single locus). The more frequent haplotype persisted for almost 3 years in the human population. The allele Pm09-299 described previously as a genetic marker for South American P. malariae was not found in our samples. Of the 3 non-human primate samples from the Amazon Region, 3 different multilocus genotypes were recorded indicating a greater diversity among isolates of P. brasilianum compared to P. malariae and thus, P. malariae might in fact derive from P. brasilianum as has been proposed in recent studies. Taken together, our data show that based on the microsatellite data there is a relatively restricted polymorphism of P. malariae parasites as opposed to other geographic locations. (c) 2012 Elsevier B.V. All rights reserved.
Resumo:
Abstract Background Signaling by the vitamin A-derived morphogen retinoic acid (RA) is required at multiple steps of cardiac development. Since conversion of retinaldehyde to RA by retinaldehyde dehydrogenase type II (ALDH1A2, a.k.a RALDH2) is critical for cardiac development, we screened patients with congenital heart disease (CHDs) for genetic variation at the ALDH1A2 locus. Methods One-hundred and thirty-three CHD patients were screened for genetic variation at the ALDH1A2 locus through bi-directional sequencing. In addition, six SNPs (rs2704188, rs1441815, rs3784259, rs1530293, rs1899430) at the same locus were studied using a TDT-based association approach in 101 CHD trios. Observed mutations were modeled through molecular mechanics (MM) simulations using the AMBER 9 package, Sander and Pmemd programs. Sequence conservation of observed mutations was evaluated through phylogenetic tree construction from ungapped alignments containing ALDH8 s, ALDH1Ls, ALDH1 s and ALDH2 s. Trees were generated by the Neighbor Joining method. Variations potentially affecting splicing mechanisms were cloned and functional assays were designed to test splicing alterations using the pSPL3 splicing assay. Results We describe in Tetralogy of Fallot (TOF) the mutations Ala151Ser and Ile157Thr that change non-polar to polar residues at exon 4. Exon 4 encodes part of the highly-conserved tetramerization domain, a structural motif required for ALDH oligomerization. Molecular mechanics simulation studies of the two mutations indicate that they hinder tetramerization. We determined that the SNP rs16939660, previously associated with spina bifida and observed in patients with TOF, does not affect splicing. Moreover, association studies performed with classical models and with the transmission disequilibrium test (TDT) design using single marker genotype, or haplotype information do not show differences between cases and controls. Conclusion In summary, our screen indicates that ALDH1A2 genetic variation is present in TOF patients, suggesting a possible causal role for this gene in rare cases of human CHD, but does not support the hypothesis that variation at the ALDH1A2 locus is a significant modifier of the risk for CHD in humans.