7 resultados para Generalized Monge-Amp`ere equations

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

40.00% 40.00%

Publicador:

Resumo:

In this paper, we give sufficient conditions for the uniform boundedness and uniform ultimate boundedness of solutions of a class of retarded functional differential equations with impulse effects acting on variable times. We employ the theory of generalized ordinary differential equations to obtain our results. As an example, we investigate the boundedness of the solution of a circulating fuel nuclear reactor model.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Fundamental principles of mechanics were primarily conceived for constant mass systems. Since the pioneering works of Meshcherskii (see historical review in Mikhailov (Mech. Solids 10(5):32-40, 1975), efforts have been made in order to elaborate an adequate mathematical formalism for variable mass systems. This is a current research field in theoretical mechanics. In this paper, attention is focused on the derivation of the so-called 'generalized canonical equations of Hamilton' for a variable mass particle. The applied technique consists in the consideration of the mass variation process as a dissipative phenomenon. Kozlov's (Stek. Inst. Math 223:178-184, 1998) method, originally devoted to the derivation of the generalized canonical equations of Hamilton for dissipative systems, is accordingly extended to the scenario of variable mass systems. This is done by conveniently writing the flux of kinetic energy from or into the variable mass particle as a 'Rayleigh-like dissipation function'. Cayley (Proc. R Soc. Lond. 8:506-511, 1857) was the first scholar to propose such an analogy. A deeper discussion on this particular subject will be left for a future paper.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this paper we continue the development of the differential calculus started in Aragona et al. (Monatsh. Math. 144: 13-29, 2005). Guided by the so-called sharp topology and the interpretation of Colombeau generalized functions as point functions on generalized point sets, we introduce the notion of membranes and extend the definition of integrals, given in Aragona et al. (Monatsh. Math. 144: 13-29, 2005), to integrals defined on membranes. We use this to prove a generalized version of the Cauchy formula and to obtain the Goursat Theorem for generalized holomorphic functions. A number of results from classical differential and integral calculus, like the inverse and implicit function theorems and Green's theorem, are transferred to the generalized setting. Further, we indicate that solution formulas for transport and wave equations with generalized initial data can be obtained as well.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We study measure functional differential equations and clarify their relation to generalized ordinary differential equations. We show that functional dynamic equations on time scales represent a special case of measure functional differential equations. For both types of equations, we obtain results on the existence and uniqueness of solutions, continuous dependence, and periodic averaging.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

In this work we present the idea of how generalized ensembles can be used to simplify the operational study of non-additive physical systems. As alternative of the usual methods of direct integration or mean-field theory, we show how the solution of the Ising model with infinite-range interactions is obtained by using a generalized canonical ensemble. We describe how the thermodynamical properties of this model in the presence of an external magnetic field are founded by simple parametric equations. Without impairing the usual interpretation, we obtain an identical critical behaviour as observed in traditional approaches.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

We prove a periodic averaging theorem for generalized ordinary differential equations and show that averaging theorems for ordinary differential equations with impulses and for dynamic equations on time scales follow easily from this general theorem. We also present a periodic averaging theorem for a large class of retarded equations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Non-commutative geometry indicates a deformation of the energy-momentum dispersion relation f (E) = E/pc (not equal 1) for massless particles. This distorted energy-momentum relation can affect the radiation-dominated phase of the universe at sufficiently high temperature. This prompted the idea of non-commutative inflation by Alexander et al (2003 Phys. Rev. D 67 081301) and Koh and Brandenberger (2007 JCAP06(2007) 021 and JCAP11(2007) 013). These authors studied a one-parameter family of a non-relativistic dispersion relation that leads to inflation: the a family of curves f (E) = 1 + (lambda E)(alpha). We show here how the conceptually different structure of symmetries of non-commutative spaces can lead, in a mathematically consistent way, to the fundamental equations of non-commutative inflation driven by radiation. We describe how this structure can be considered independently of (but including) the idea of non-commutative spaces as a starting point of the general inflationary deformation of SL(2, C). We analyze the conditions on the dispersion relation that leads to inflation as a set of inequalities which plays the same role as the slow-roll conditions on the potential of a scalar field. We study conditions for a possible numerical approach to obtain a general one-parameter family of dispersion relations that lead to successful inflation.