3 resultados para Gastro-retentive

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

BACKGROUND & AIMS: Homozygous loss of function mutations in interleukin-10 (IL10) and interleukin-10 receptors (IL10R) cause severe infantile (very early onset) inflammatory bowel disease (IBD). Allogeneic hematopoietic stem cell transplantation (HSCT) was reported to induce sustained remission in 1 patient with IL-10R deficiency. We investigated heterogeneity among patients with very early onset IBD, its mechanisms, and the use of allogeneic HSCT to treat this disorder. METHODS: We analyzed 66 patients with early onset IBD (younger than 5 years of age) for mutations in the genes encoding IL-10, IL-10R1, and IL-10R2. IL-10R deficiency was confirmed by functional assays on patients' peripheral blood mononuclear cells (immunoblot and enzyme-linked immunosorbent assay analyses). We assessed the therapeutic effects of standardized allogeneic HSCT. RESULTS: Using a candidate gene sequencing approach, we identified 16 patients with IL-10 or IL-10R deficiency: 3 patients had mutations in IL-10, 5 had mutations in IL-10R1, and 8 had mutations in IL-10R2. Refractory colitis became manifest in all patients within the first 3 months of life and was associated with perianal disease (16 of 16 patients). Extraintestinal symptoms included folliculitis (11 of 16) and arthritis (4 of 16). Allogeneic HSCT was performed in 5 patients and induced sustained clinical remission with a median follow-up time of 2 years. In vitro experiments confirmed reconstitution of IL-10R-mediated signaling in all patients who received the transplant. CONCLUSIONS: We identified loss of function mutations in IL-10 and IL-10R in patients with very early onset IBD. These findings indicate that infantile IBD patients with perianal disease should be screened for IL-10 and IL-10R deficiency and that allogeneic HSCT can induce remission in those with IL-10R deficiency.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Statement of problem. Matrices of unsplinted attachment systems are generally reported to be the weak component of implant overdentures, often requiring frequent maintenance. Clinical wear results in reduced retention of the prosthesis, requiring activation or renewal of the matrix to restore the initial level of retention. Purpose. The purpose of this retrospective study was to measure the wear of the matrix of a ball attachment after various periods of clinical wear. Material and methods. Seventy specimens of 3 groups of matrices of ball attachments that had been in use for mean periods of 12.3 months (1Y group, n=26), 39.0 months (3Y group, n=28) and 95.6 months (8Y group, n=16) were retrieved from 35 patients (2 specimens per patient) and measured on a coordinate measuring machine equipped with a touch trigger probe. Ten unused matrices were used as controls (CTRL group). The external and internal matrix diameters and deviations from circularity were measured. For the various time periods, the decreases in matrix thickness were calculated and compared with controls. Kruskal-Wallis 1-way ANOVA by ranks, followed by the Mann-Whitney post hoc tests, were conducted to test for differences in median values among groups (alpha=.05). Results. For the internal upper diameter of the matrices tested, the Kruskal-Wallis and Mann-Whitney tests revealed significant differences for the 3 groups compared to the controls. For group 1Y, a significant difference (P<.001) of the internal upper diameter was found compared to the CTRL group. Compared to the controls, the nonparametric analyses for groups 3Y and 8Y showed significant differences for the internal upper diameter (P<.001) and deviations from circularity (P<.001). For groups 1Y, 3Y and 8Y, matrix thickness losses were 07, 47 and 70 pm, respectively. Conclusions. Within the limitations of this study, it was observed that one year of clinical wear had limited effect on the ball attachment matrices. Three to 8 years of clinical use resulted in a significant decrease of matrix thickness, especially at the tip of the retentive lamellae. (J Prosthet Dent 2012;107:191-198)

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Study Design. Ex vivo study of the mechanical performance of cylindrical and dual-core pedicle screws after insertion, removal, and reinsertion in the same hole. Objective. To evaluate the effect of repeated use of same screw hole on the insertion torque and the retentive strength of the cylindrical and dual-core screws. Summary of Background Data. Insertion and removal of pedicle screws is sometimes necessary during surgical procedure to assess the integrity of the pilot-hole wall. However, this maneuver may compromise the implant-holding capacity. Methods. Sixty thoracolombar vertebrae (T13-L5), harvested from 10 healthy calves, were used to insert 2 different designs of pedicle screws: cylindrical (5.0-mm outer diameter) and dual-core screws (5.2-mm outer diameter). Three experimental groups were created on the basis of the number of insertions of the screws and 2 subgroups were established according to the core pedicle screw design (dual-core and cylindrical). The insertion torque was measured during initial insertion, second insertion, and third insertion. Pullout screw tests were performed using a universal testing machine to evaluate the pullout strength after initial insertion, second insertion, and third insertion. Results. Significant reductions of 38% in mean insertion torque and 30% in mean pullout strength of dual-core screw were observed between the initial insertion and the third insertion. The cylindrical screw observed significant reductions of 52.5% in mean insertion torque and 42.3% in mean pullout strength between the initial insertion and the third insertion. A reduction of mean insertion torque and pullout strength between the first insertion and the second insertion but without significance was also observed for both types of screws. Conclusion. Insertions and reinsertion of either cylindrical or dual-core pedicle screws have compromised insertion torque and pullout strength of the implants as measured by mechanical tests.