4 resultados para GUILLOTINE CUTTING PROBLEMS
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
In this study, a dynamic programming approach to deal with the unconstrained two-dimensional non-guillotine cutting problem is presented. The method extends the recently introduced recursive partitioning approach for the manufacturer's pallet loading problem. The approach involves two phases and uses bounds based on unconstrained two-staged and non-staged guillotine cutting. The method is able to find the optimal cutting pattern of a large number of pro blem instances of moderate sizes known in the literature and a counterexample for which the approach fails to find known optimal solutions was not found. For the instances that the required computer runtime is excessive, the approach is combined with simple heuristics to reduce its running time. Detailed numerical experiments show the reliability of the method. Journal of the Operational Research Society (2012) 63, 183-200. doi: 10.1057/jors.2011.6 Published online 17 August 2011
Resumo:
This paper reports an experimental method to estimate the convective heat transfer of cutting fluids in a laminar flow regime applied on a thin steel plate. The heat source provided by the metal cutting was simulated by electrical heating of the plate. Three different cooling conditions were evaluated: a dry cooling system, a flooded cooling system and a minimum quantity of lubrication cooling system, as well as two different cutting fluids for the last two systems. The results showed considerable enhancement of convective heat transfer using the flooded system. For the dry and minimum quantity of lubrication systems, the heat conduction inside the body was much faster than the heat convection away from its surface. In addition, using the Biot number, the possible models were analyzed for conduction heat problems for each experimental condition tested.
Resumo:
The thermal limits of individual animals were originally proposed as a link between animal physiology and thermal ecology. Although this link is valid in theory, the evaluation of physiological tolerances involves some problems that are the focus of this study. One rationale was that heating rates shall influence upper critical limits, so that ecological thermal limits need to consider experimental heating rates. In addition, if thermal limits are not surpassed in experiments, subsequent tests of the same individual should yield similar results or produce evidence of hardening. Finally, several non-controlled variables such as time under experimental conditions and procedures may affect results. To analyze these issues we conducted an integrative study of upper critical temperatures in a single species, the ant Atta sexdens rubropiosa, an animal model providing large numbers of individuals of diverse sizes but similar genetic makeup. Our specific aims were to test the 1) influence of heating rates in the experimental evaluation of upper critical temperature, 2) assumptions of absence of physical damage and reproducibility, and 3) sources of variance often overlooked in the thermal-limits literature; and 4) to introduce some experimental approaches that may help researchers to separate physiological and methodological issues. The upper thermal limits were influenced by both heating rates and body mass. In the latter case, the effect was physiological rather than methodological. The critical temperature decreased during subsequent tests performed on the same individual ants, even one week after the initial test. Accordingly, upper thermal limits may have been overestimated by our (and typical) protocols. Heating rates, body mass, procedures independent of temperature and other variables may affect the estimation of upper critical temperatures. Therefore, based on our data, we offer suggestions to enhance the quality of measurements, and offer recommendations to authors aiming to compile and analyze databases from the literature.
Resumo:
Cutting and packing problems arise in a variety of industries, including garment, wood and shipbuilding. Irregular shape packing is a special case which admits irregular items and is much more complex due to the geometry of items. In order to ensure that items do not overlap and no item from the layout protrudes from the container, the collision free region concept was adopted. It represents all possible translations for a new item to be inserted into a container with already placed items. To construct a feasible layout, collision free region for each item is determined through a sequence of Boolean operations over polygons. In order to improve the speed of the algorithm, a parallel version of the layout construction was proposed and it was applied to a simulated annealing algorithm used to solve bin packing problems. Tests were performed in order to determine the speed improvement of the parallel version over the serial algorithm