4 resultados para GREAT CRASH

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objective: Optimal surgical treatment of patients with transposition of the great arteries (TGA), ventricular septal defect (VSD), and pulmonary stenosis (PS) remains a matter of debate. This study evaluated the clinical outcome and right ventricle outflow tract performance in the long-term follow-up of patients subjected to pulmonary root translocation (PRT) as part of their surgical repair. Methods: From April 1994 to December 2010, we operated on 44 consecutive patients (median age, 11 months). All had malposition of the great arteries as follows: TGA with VSD and PS (n = 33); double-outlet right ventricle with subpulmonary VSD (n = 7); double-outlet right ventricle with atrioventricular septal defect (n = 1); and congenitally corrected TGA with VSD and PS (n 3). The surgical technique consisted of PRT from the left ventricle to the right ventricle after construction of an intraventricular tunnel that diverted blood flow from the left ventricle to the aorta. Results: The mean follow-up time was 72 +/- 52.1 months. There were 3 (6.8%) early deaths and 1 (2.3%) late death. Kaplan-Meier survival was 92.8% and reintervention-free survival was 82.9% at 12 years. Repeat echocardiographic data showed nonlinear growth of the pulmonary root and good performance of the valve at 10 years. Only 4 patients required reinterventions owing to right ventricular outflow tract problems. Conclusions: PRT is a good surgical alternative for treatment of patients with TGA complexes, VSD, and PS, with acceptable operative risk, high long-term survivals, and few reinterventions. Most patients had adequate pulmonary root growth and performance. (J Thorac Cardiovasc Surg 2012;143:1292-8)

Relevância:

20.00% 20.00%

Publicador:

Resumo:

1. A long-standing question in ecology is how natural populations respond to a changing environment. Emergent optimal foraging theory-based models for individual variation go beyond the population level and predict how its individuals would respond to disturbances that produce changes in resource availability. 2. Evaluating variations in resource use patterns at the intrapopulation level in wild populations under changing environmental conditions would allow to further advance in the research on foraging ecology and evolution by gaining a better idea of the underlying mechanisms explaining trophic diversity. 3. In this study, we use a large spatio-temporal scale data set (western continental Europe, 19682006) on the diet of Bonellis Eagle Aquila fasciata breeding pairs to analyse the predator trophic responses at the intrapopulation level to a prey population crash. In particular, we borrow metrics from studies on network structure and intrapopulation variation to understand how an emerging infectious disease [the rabbit haemorrhagic disease (RHD)] that caused the density of the eagles primary prey (rabbit Oryctolagus cuniculus) to dramatically drop across Europe impacted on resource use patterns of this endangered raptor. 4. Following the major RHD outbreak, substantial changes in Bonellis Eagles diet diversity and organisation patterns at the intrapopulation level took place. Dietary variation among breeding pairs was larger after than before the outbreak. Before RHD, there were no clusters of pairs with similar diets, but significant clustering emerged after RHD. Moreover, diets at the pair level presented a nested pattern before RHD, but not after. 5. Here, we reveal how intrapopulation patterns of resource use can quantitatively and qualitatively vary, given drastic changes in resource availability. 6. For the first time, we show that a pathogen of a prey species can indirectly impact the intrapopulation patterns of resource use of an endangered predator.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Preformed structural reinforcements have shown good performance in crash tests, where the great advantage is their weight. These reinforcements are designed with the aim of increasing the rigidity of regions with large deformations, thus stabilising sections of the vehicle that work as load path during impact. The objective of this work is to show the application of structural reinforcements made of polymeric material PA66 in the field of vehicle safety, through finite element simulations. Simulations of frontal impact at 50 km/h and in ODB (offset deformable barrier) at 57 km/h configurations (standards such as ECE R-94 and ECE R-12) were performed in the software LS-DYNA R (R) and MADYMO (R). The simulations showed that the use of polymeric reinforcements leads to a 70% reduction in A-pillar intrusion, a 65% reduction in the displacement of the steering column and a 59% reduction in the deformation in the region of the occupant legs and feet. The level of occupant injuries was analysed by MADYMO (R) software, and a reduction of 23.5% in the chest compression and 80% in the tibia compression were verified. According to the standard, such conditions lead to an improvement in the occupant safety in a vehicle collision event.

Relevância:

20.00% 20.00%

Publicador: