2 resultados para GOLD MINIGRID ELECTRODE
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The preserved activity of immobilized biomolecules in layer-by-layer (LbL) films can be exploited in various applications. including biosensing. In this study, cholesterol oxidase (COX) layers were alternated with layers of poly(allylamine hydrochloride) (PAH) in LbL films whose morphology was investigated with atomic force microscopy (AFM). The adsorption kinetics of COX layers comprised two regimes, a fast, first-order kinetics process followed by a slow process fitted with a Johnson-Mehl-Avrami (JMA) function. with exponent similar to 2 characteristic of aggregates growing as disks. The concept based on the use of sensor arrays to increase sensitivity, widely employed in electronic tongues, was extended to biosensing with impedance spectroscopy measurements. Using three sensing units, made of LbL films of PAH/COX and PAHIPVS (polyvinyl sulfonic acid) and a bare gold interdigitated electrode, we were able to detect cholesterol in aqueous solutions down to the 10(-6) M level. This high sensitivity is attributed to the molecular-recognition interaction between COX and cholesterol, and opens the way for clinical tests to be made with low cost. fast experimental procedures. (C) 2008 Published by Elsevier B.V.
Resumo:
DETERMINATION OF KINETIC AND THERMODYNAMIC PARAMETERS OF L-CYSTEINE ADSORPTION ONTO GOLD BY THE QCM TECHNIQUE. This article discusses the adsorption kinetics of a L-cysteine monolayer onto a gold surface by means of information obtained through the QCM technique. The results indicate that the adsorption process is rapid and follows the Langmuir isotherm, in which adsorption and desorption are considered. From these measurements the following parameter values were obtained: k(d) = (4.2 +/- 0.4) x 10(-3) s(-1), k(a) = 75 +/- 6 M-1 s(-1), K-eq=(1.8 +/- 0.3) x 10(4) M-1 and Delta G(ads) = -(5.8 +/- 0.2) kcal mol(-1).