25 resultados para GIANT PLANET
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
We report the discovery by the CoRoT space mission of a new giant planet, CoRoT-20b. The planet has a mass of 4.24 +/- 0.23 M-Jup and a radius of 0.84 +/- 0.04 R-Jup. With a mean density of 8.87 +/- 1.10 g cm(-3), it is among the most compact planets known so far. Evolutionary models for the planet suggest a mass of heavy elements of the order of 800 M-circle plus if embedded in a central core, requiring a revision either of the planet formation models or both planet evolution and structure models. We note however that smaller amounts of heavy elements are expected by more realistic models in which they are mixed throughout the envelope. The planet orbits a G-type star with an orbital period of 9.24 days and an eccentricity of 0.56. The star's projected rotational velocity is v sin i = 4.5 +/- 1.0 km s(-1), corresponding to a spin period of 11.5 +/- 3.1 days if its axis of rotation is perpendicular to the orbital plane. In the framework of Darwinian theories and neglecting stellar magnetic breaking, we calculate the tidal evolution of the system and show that CoRoT-20b is presently one of the very few Darwin-stable planets that is evolving toward a triple synchronous state with equality of the orbital, planetary and stellar spin periods.
Resumo:
We have completed a high-contrast direct imaging survey for giant planets around 57 debris disk stars as part of the Gemini NICI Planet-Finding Campaign. We achieved median H-band contrasts of 12.4 mag at 0.''5 and 14.1 mag at 1'' separation. Follow-up observations of the 66 candidates with projected separation <500 AU show that all of them are background objects. To establish statistical constraints on the underlying giant planet population based on our imaging data, we have developed a new Bayesian formalism that incorporates (1) non-detections, (2) single-epoch candidates, (3) astrometric and (4) photometric information, and (5) the possibility of multiple planets per star to constrain the planet population. Our formalism allows us to include in our analysis the previously known β Pictoris and the HR 8799 planets. Our results show at 95% confidence that <13% of debris disk stars have a ≥5 M Jup planet beyond 80 AU, and <21% of debris disk stars have a ≥3 M Jup planet outside of 40 AU, based on hot-start evolutionary models. We model the population of directly imaged planets as d 2 N/dMdavpropm α a β, where m is planet mass and a is orbital semi-major axis (with a maximum value of a max). We find that β < –0.8 and/or α > 1.7. Likewise, we find that β < –0.8 and/or a max < 200 AU. For the case where the planet frequency rises sharply with mass (α > 1.7), this occurs because all the planets detected to date have masses above 5 M Jup, but planets of lower mass could easily have been detected by our search. If we ignore the β Pic and HR 8799 planets (should they belong to a rare and distinct group), we find that <20% of debris disk stars have a ≥3 M Jup planet beyond 10 AU, and β < –0.8 and/or α < –1.5. Likewise, β < –0.8 and/or a max < 125 AU. Our Bayesian constraints are not strong enough to reveal any dependence of the planet frequency on stellar host mass. Studies of transition disks have suggested that about 20% of stars are undergoing planet formation; our non-detections at large separations show that planets with orbital separation >40 AU and planet masses >3 M Jup do not carve the central holes in these disks.
Resumo:
Context. Observations of transiting extrasolar planets are of key importance to our understanding of planets because their mass, radius, and mass density can be determined. These measurements indicate that planets of similar mass can have very different radii. For low-density planets, it is generally assumed that they are inflated owing to their proximity to the host-star. To determine the causes of this inflation, it is necessary to obtain a statistically significant sample of planets with precisely measured masses and radii. Aims. The CoRoT space mission allows us to achieve a very high photometric accuracy. By combining CoRoT data with high-precision radial velocity measurements, we derive precise planetary radii and masses. We report the discovery of CoRoT-19b, a gas-giant planet transiting an old, inactive F9V-type star with a period of four days. Methods. After excluding alternative physical configurations mimicking a planetary transit signal, we determine the radius and mass of the planet by combining CoRoT photometry with high-resolution spectroscopy obtained with the echelle spectrographs SOPHIE, HARPS, FIES, and SANDIFORD. To improve the precision of its ephemeris and the epoch, we observed additional transits with the TRAPPIST and Euler telescopes. Using HARPS spectra obtained during the transit, we then determine the projected angle between the spin of the star and the orbit of the planet. Results. We find that the host star of CoRoT-19b is an inactive F9V-type star close to the end of its main-sequence life. The host star has a mass M-* = 1.21 +/- 0.05 M-circle dot and radius R-* = 1.65 +/- 0.04 R-circle dot. The planet has a mass of M-P = 1.11 +/- 0.06 M-Jup and radius of R-P = 1.29 +/- 0.03 R-Jup. The resulting bulk density is only rho = 0.71 +/- 0.06 g cm (3), which is much lower than that for Jupiter. Conclusions. The exoplanet CoRoT-19b is an example of a giant planet of almost the same mass as Jupiter but a approximate to 30% larger radius.
Resumo:
CoRoT-21, a F8IV star of magnitude V = 16 mag, was observed by the space telescope CoRoT during the Long Run 01 ( LRa01) in the first winter field (constellation Monoceros) from October 2007 to March 2008. Transits were discovered during the light curve processing. Radial velocity follow-up observations, however, were performed mainly by the 10-m Keck telescope in January 2010. The companion CoRoT-21b is a Jupiter-like planet of 2.26 +/- 0.33 Jupiter masses and 1.30 +/- 0.14 Jupiter radii in an circular orbit of semi-major axis 0.0417 +/- 0.0011 AU and an orbital period of 2.72474 +/- 0.00014 days. The planetary bulk density is ( 1.36 +/- 0.48) x 10(3) kg m(-3), very similar to the bulk density of Jupiter, and follows an M-1/3 - R relation like Jupiter. The F8IV star is a sub-giant star of 1.29 +/- 0.09 solar masses and 1.95 +/- 0.2 solar radii. The star and the planet exchange extreme tidal forces that will lead to orbital decay and extreme spin-up of the stellar rotation within 800 Myr if the stellar dissipation is Q(*)/k2(*) <= 107.
Resumo:
We present a study of the stellar parameters and iron abundances of 18 giant stars in six open clusters. The analysis was based on high-resolution and high-S/N spectra obtained with the UVES spectrograph (VLT-UT2). The results complement our previous study where 13 clusters were already analyzed. The total sample of 18 clusters is part of a program to search for planets around giant stars. The results show that the 18 clusters cover a metallicity range between -0.23 and +0.23 dex. Together with the derivation of the stellar masses, these metallicities will allow the metallicity and mass effects to be disentangled when analyzing the frequency of planets as a function of these stellar parameters.
Resumo:
We have carried out high contrast imaging of 70 young, nearby B and A stars to search for brown dwarf and planetary companions as part of the Gemini NICI Planet-Finding Campaign. Our survey represents the largest, deepest survey for planets around high-mass stars (≈1.5-2.5 M ☉) conducted to date and includes the planet hosts β Pic and Fomalhaut. We obtained follow-up astrometry of all candidate companions within 400 AU projected separation for stars in uncrowded fields and identified new low-mass companions to HD 1160 and HIP 79797. We have found that the previously known young brown dwarf companion to HIP 79797 is itself a tight (3 AU) binary, composed of brown dwarfs with masses 58$^{+21}_{-20}$ M Jup and 55$^{+20}_{-19}$ M Jup, making this system one of the rare substellar binaries in orbit around a star. Considering the contrast limits of our NICI data and the fact that we did not detect any planets, we use high-fidelity Monte Carlo simulations to show that fewer than 20% of 2 M ☉ stars can have giant planets greater than 4 M Jup between 59 and 460 AU at 95% confidence, and fewer than 10% of these stars can have a planet more massive than 10 M Jup between 38 and 650 AU. Overall, we find that large-separation giant planets are not common around B and A stars: fewer than 10% of B and A stars can have an analog to the HR 8799 b (7 M Jup, 68 AU) planet at 95% confidence. We also describe a new Bayesian technique for determining the ages of field B and A stars from photometry and theoretical isochrones. Our method produces more plausible ages for high-mass stars than previous age-dating techniques, which tend to underestimate stellar ages and their uncertainties.
Resumo:
We report the discovery of two low-mass companions to the young A0V star HD 1160 at projected separations of 81 +/- 5 AU (HD 1160 B) and 533 +/- 25 AU (HD 1160 C) by the Gemini NICI Planet-Finding Campaign. Very Large Telescope images of the system taken over a decade for the purpose of using HD 1160 A as a photometric calibrator confirm that both companions are physically associated. By comparing the system to members of young moving groups and open clusters with well-established ages, we estimate an age of 50(-40)(+50) Myr for HD 1160 ABC. While the UVW motion of the system does not match any known moving group, the small magnitude of the space velocity is consistent with youth. Near-IR spectroscopy shows HD 1160 C to be an M3.5 +/- 0.5 star with an estimated mass of 0.22(-0.04)(+0.03) M-circle dot, while NIR photometry of HD 1160 B suggests a brown dwarf with a mass of 33(-9)(+12) M-Jup. The very small mass ratio (0.014) between the A and B components of the system is rare for A star binaries, and would represent a planetary-mass companion were HD 1160 A to be slightly less massive than the Sun.
Resumo:
The giant extracellular hemoglobin of Glossoscolex paulistus (HbGp) is constituted by approximately 144 subunits containing heme groups with molecular masses in the range of 16-19 kDa forming a monomer (d) and a trimer (abc), and around 36 non-heme structures, named linkers (L). Matrix-assisted laser desorption/ionization time-of-flight (MALDI-TOF-MS) analysis was performed recently, to obtain directly information on the molecular masses of the different subunits from HbGp in the oxy-form. This technique demonstrated structural similarity between HbGp and the widely studied hemoglobin of Lumbricus terrestris (HbLt). Indeed, two major isoforms (d(1) and d(2)) of identical proportions with masses of 16,355+/-25 and 16,428+/-24 Da, respectively, and two minor isoforms (d(3) and d(4)) with masses around 16.6 kDa were detected for monomer d of HbGp. In the present work, the effects of anionic sodium dodecyl sulfate (SDS) and cationic cethyltrimethyl ammonium chloride (CTAC) on the oligomeric structure of HbGp have been studied by MALDI-TOF-MS in order to evaluate the interaction between ionic surfactants and HbGp. The data obtained with this technique show an effective interaction of cationic surfactant CTAC with the two isoforms of monomer d, d(1) and d(2), both in the whole protein as well as in the pure isolated monomer. The results show that up to 10 molecules of CTAC are bound to each isoform of the monomer. Differently, the mass spectra obtained for SDS-HbGp system showed that the addition of the anionic surfactant SDS does not originate any mass increment of the monomeric subunits, indicating that SDS-HbGp interaction is, probably, significantly less effective as compared to CTAC-HbGp one. The acid pI of the protein around 5.5 is, probably, responsible for this behavior. The results of this work suggest also some interaction of both surfactants with linker chains as well as with trimers, as judged from observed mass increments. Our data are consistent with a recent spectroscopic study showing a strong interaction between CTAC and HbGp at physiological pH [P.S.Santiago, et al, Biochim. Biophys. Acta. 1770 (2007) 506-517.]. (C) 2007 Elsevier B.V. All rights reserved.
Resumo:
We describe the male reproductive apparatus of the giant hermit crab Petrochirus diogenes, with morphological and biometric analyses of the spermatophore, the gonopore and the ultrastructure of the spermatozoa. Specimens were collected from the southern coast of Sao Paulo, Brazil. Morphological analyses were done using stereoscopic, light, transmission and scanning electron microscopy. The reproductive system of this hermit crab is composed of elongate and lobular testes followed by vasa deferentia that connect to the exterior via gonopores. The gonopores are ovoid and surrounded by setae, and each gonopore is composed of a membranous operculum that forms a depression constituting the gonopore opening. The gonopore constitutes a unique structure among the Diogenidae due to its number of setae. The spermatophores are tripartite, composed of a sperm-containing ampulla, a peduncle and a proximal foot. The spermatozoon has 3 main regions (acrosomal vesicle, nucleus and cytoplasm). The structure of the spermatophore indicates that this species can be considered an exception within Diogenidae with regard to spermatophore morphology and can therefore be used for phylogenetic inferences.
Resumo:
Context. The Sun shows abundance anomalies relative to most solar twins. If the abundance peculiarities are due to the formation of inner rocky planets, that would mean that only a small fraction of solar type stars may host terrestrial planets. Aims. In this work we study HIP 56948, the best solar twin known to date, to determine with an unparalleled precision how similar it is to the Sun in its physical properties, chemical composition and planet architecture. We explore whether the abundances anomalies may be due to pollution from stellar ejecta or to terrestrial planet formation. Methods. We perform a differential abundance analysis (both in LTE and NLTE) using high resolution (R similar to 100 000) high S/N (600-650) Keck HIRES spectra of the Sun (as reflected from the asteroid Ceres) and HIP 56948. We use precise radial velocity data from the McDonald and Keck observatories to search for planets around this star. Results. We achieve a precision of sigma less than or similar to 0.003 dex for several elements. Including errors in stellar parameters the total uncertainty is as low as sigma similar or equal to 0.005 dex (1%), which is unprecedented in elemental abundance studies. The similarities between HIP 56948 and the Sun are astonishing. HIP 56948 is only 17 +/- 7 K hotter than the Sun, and log g, [Fe/H] and microturbulence velocity are only +0.02 +/- 0.02 dex, +0.02 +/- 0.01 dex and +0.01 +/- 0.01 km s(-1) higher than solar, respectively. Our precise stellar parameters and a differential isochrone analysis shows that HIP 56948 has a mass of 1.02 +/- 0.02 M-circle dot and that it is similar to 1 Gyr younger than the Sun, as constrained by isochrones, chromospheric activity, Li and rotation. Both stars show a chemical abundance pattern that differs from most solar twins, but the refractory elements (those with condensation temperature T-cond greater than or similar to 1000 K) are slightly (similar to 0.01 dex) more depleted in the Sun than in HIP 56948. The trend with T-cond in differential abundances (twins -HIP 56948) can be reproduced very well by adding similar to 3 M-circle plus of a mix of Earth and meteoritic material, to the convection zone of HIP 56948. The element-to-element scatter of the Earth/meteoritic mix for the case of hypothetical rocky planets around HIP 56948 is only 0.0047 dex. From our radial velocity monitoring we find no indications of giant planets interior to or within the habitable zone of HIP 56948. Conclusions. We conclude that HIP 56948 is an excellent candidate to host a planetary system like our own, including the possible presence of inner terrestrial planets. Its striking similarity to the Sun and its mature age makes HIP 56948 a prime target in the quest for other Earths and SETI endeavors.
Resumo:
Tridacnid clams are conspicuous inhabitants of Indo-Pacific coral reefs and are traded and cultivated for the aquarium and food industries. In the present study, daily growth rates of larvae of the giant clam Tridacna crocea were determined in the laboratory during the first week of life. Adults were induced to spawn via intra-gonadal serotonin injection through the byssal orifice. After spawning oocytes were collected, fertilized and kept in 3 L glass beakers and raceways treated with antibiotics to avoid culture contamination. Larvae were fed twice with the microalga Isochrysis galbana and zooxanthellae were also offered twice during the veliger stage (days 4 and 6). Larval length was measured using a digitizing tablet coupled to a microcomputer. Larval mortality was exponential during the first 48 hours of life declining significantly afterwards. Mean growth rate was 11.3 mu m day-1, increasing after addition of symbionts to 18.0 mu m day-1. Survival increased to ca. 75% after the addition of zooxanthellae. The results describe the growth curve for T. crocea larvae and suggest that the acquisition of symbionts by larvae may be useful for larval growth and survival even before larvae have attained metamorphosis.
Resumo:
Central giant cell lesions are benign intraosseous proliferative lesions that have considerable local aggressiveness. Nonsurgical treatment methods, such as intralesional corticosteroid injections, systemic calcitonin and interferon have been reported. Recently, bisphosphonates have been used to treat central giant cell lesions. A case of a 36-year-old male with a central giant cell lesion crossing the mandibular midline was treated with intralesional corticosteroids combined with alendronate sodium for the control of systemic bone resorption. The steroid injections and the use of bisphosphonates were stopped after seven months when further needle penetration into the lesion was not possible due to new bone formation. After two years, the bony architecture was near normal, and only minimal radiolucency was present around the root apices of the involved teeth. The patient was followed up for four years, and panoramic radiography showed areas of new bone formation. Thus far, neither recurrence nor side effects of the medication have been detected.
Resumo:
Introduction: The most common indication for surgical correction of giant left atrium is associated with mitral valve insufficiency with or without atrial fibrillation. Several techniques for this purpose are already described with varying results. Objective: To present the initial experience with the tangential triangular resection technique (Pomerantzeff). Methods: From 2002 to 2010, four patients underwent mitral valve operation with reduction of left atrial volume by the technique of triangular resection tangential in our service. Three patients were female. The age ranged from 21 to 51 years old. The four patients presented with atrial fibrillation. Ejection fraction of left ventricle preoperatively ranged from 38% to 62%. The left atrial diameter ranged from 78mm to 140mm. After treatment of mitral dysfunction, the left atrium was reduced by resecting triangular tangential posterior wall between the pulmonary veins to avoid anatomic distortion of the mitral valve or pulmonary veins, reducing tension in the suture line. Results: Average hospital stay was 21.5 +/- 6.5 days. The mean cardiopulmonary bypass time was 130 +/- 30 minutes. There was no surgical bleeding or mortality in the postoperative period. All patients had sinus rhythm restored in the output of cardiopulmonary bypass, maintaining this rate postoperatively. The average diameter of the left atrium was reduced by 50.5% +/- 19.5%. The left ventricular ejection fraction improved in all patients. Conclusion: Initial results with this technique have shown effective reduction of the left atrium.
Resumo:
Magnetotactic bacteria biomineralize magnetic minerals with precisely controlled size, morphology, and stoichiometry. These cosmopolitan bacteria are widely observed in aquatic environments. If preserved after burial, the inorganic remains of magnetotactic bacteria act as magnetofossils that record ancient geomagnetic field variations. They also have potential to provide paleoenvironmental information. In contrast to conventional magnetofossils, giant magnetofossils (most likely produced by eukaryotic organisms) have only been reported once before from Paleocene-Eocene Thermal Maximum (PETM; 55.8 Ma) sediments on the New Jersey coastal plain. Here, using transmission electron microscopic observations, we present evidence for abundant giant magnetofossils, including previously reported elongated prisms and spindles, and new giant bullet-shaped magnetite crystals, in the Southern Ocean near Antarctica, not only during the PETM, but also shortly before and after the PETM. Moreover, we have discovered giant bullet-shaped magnetite crystals from the equatorial Indian Ocean during the Mid-Eocene Climatic Optimum (similar to 40 Ma). Our results indicate a more widespread geographic, environmental, and temporal distribution of giant magnetofossils in the geological record with a link to "hyperthermal" events. Enhanced global weathering during hyperthermals, and expanded suboxic diagenetic environments, probably provided more bioavailable iron that enabled biomineralization of giant magnetofossils. Our micromagnetic modelling indicates the presence of magnetic multi-domain (i.e., not ideal for navigation) and single domain (i.e., ideal for navigation) structures in the giant magnetite particles depending on their size, morphology and spatial arrangement. Different giant magnetite crystal morphologies appear to have had different biological functions, including magnetotaxis and other non-navigational purposes. Our observations suggest that hyperthermals provided ideal conditions for giant magnetofossils, and that these organisms were globally distributed. Much more work is needed to understand the interplay between magnetofossil morphology, climate, nutrient availability, and environmental variability.