6 resultados para GGA

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Among all magnetic semiconductors, GaMnAs seems to be the most important one. In this work, we present accurate first-principles calculations of GaMnAs within the GGA-1/2 approach: We concentrate our efforts in obtaining the position of the peak of Mn-d levels in the valence band and also the majority spin band gap. For the position of the Mn-d peak, we find a value of 3.3 eV below the Fermi level, in good agreement with the most recent experimental results of 3.5 and 3.7 eV. An analytical expression that fits the calculated E-g(x) for majority spin is derived in order to provide ready access to the band gap for the composition range from 0 to 0.25. We found a value of 3.9 eV for the gap bowing parameter. The results agree well with the most recent experimental data. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4718602]

Relevância:

20.00% 20.00%

Publicador:

Resumo:

We present ab-initio calculations of seven digital magnetic heterostructures, GaN delta-doped with V, Cr, Mn, Fe, Co, Ni, and Cu, forming two-dimensional systems. Only GaN delta-doped with V or Cr present a ferromagnetic ground state with high Curie temperatures. For both, to better describe the electronic properties, we used the GGA-1/2 approach. The ground state of GaN/Cr resulted in a two dimensional half-metal, with 100% spin polarization. For GaN/V, we obtained an insulating state: integer magnetic moment of 2.0 mu(B), a minority spin gap of 3.0 eV close to the gap of GaN, but a majority spin gap of 0.34 eV. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4751285]

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The banana weevil Cosmopolites sordidus (Germar) is one of a number of pests that attack banana crops. The use of the entomopathogenic fungus Beauveria bassiana as a biological control agent for this pest may contribute towards reducing the application of chemical insecticides on banana crops. In this study, the genetic variability of a collection of Brazilian isolates of B. bassiana was evaluated. Samples were obtained from various geographic regions of Brazil, and from different hosts of the Curculionidae family. Based on the DNA fingerprints generated by RAPD and AFLP, we found that 92 and 88 % of the loci were polymorphic, respectively. The B. bassiana isolates were attributed to two genotypic clusters based on the RAPD data, and to three genotypic clusters, when analyzed with AFLP. The nucleotide sequences of nuclear ribosomal DNA intergenic spacers confirmed that all isolates are in fact B. bassiana. Analysis of molecular variance showed that variability among the isolates was not correlated with geographic origin or hosts. A RAPD-specific marker for isolate CG 1024, which is highly virulent to C. sordidus, was cloned and sequenced. Based on the sequences obtained, specific PCR primers BbasCG1024F (5'-TGC GGC TGA GGA GGA CT-3') and BbasCG1024R (5'-TGC GGC TGA GTG TAG AAC-3') were designed for detecting and monitoring this isolate in the field.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The physical properties of small rhodium clusters, Rh-n, have been in debate due to the shortcomings of density functional theory (DFT). To help in the solution of those problems, we obtained a set of putative lowest energy structures for small Rh-n (n = 2-15) clusters employing hybrid-DFT and the generalized gradient approximation (GGA). For n = 2-6, both hybrid and GGA functionals yield similar ground-state structures (compact), however, hybrid favors compact structures for n = 7-15, while GGA favors open structures based on simple cubic motifs. Thus, experimental results are crucial to indicate the correct ground-state structures, however, we found that a unique set of structures (compact or open) is unable to explain all available experimental data. For example, the GGA structures (open) yield total magnetic moments in excellent agreement with experimental data, while hybrid structures (compact) have larger magnetic moments compared with experiments due to the increased localization of the 4d states. Thus, we would conclude that GGA provides a better description of the Rh-n clusters, however, a recent experimental-theoretical study [ Harding et al., J. Chem. Phys. 133, 214304 (2010)] found that only compact structures are able to explain experimental vibrational data, while open structures cannot. Therefore, it indicates that the study of Rh-n clusters is a challenging problem and further experimental studies are required to help in the solution of this conundrum, as well as a better description of the exchange and correlation effects on the Rh n clusters using theoretical methods such as the quantum Monte Carlo method.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

We performed a first principles investigation on the electronic properties of 4f-rare earth substitutional impurities in zincblende gallium nitride (GaN:REGa, with RE=Eu, Gd, Tb, Dy, Ho, Er and Tm). The calculations were performed within the all electron methodology and the density functional theory. We investigated how the introduction of the on-site Hubbard U potential (GGA + U) corrects the electronic properties of those impurities. We showed that a self-consistent procedure to compute the Hubbard potential provides a reliable description on the position of the 4f-related energy levels with respect of the GaN valence band top. The results were compared to available data coming from a recent phenomenological model. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The energetic stability and the electronic properties of vacancies (VX) and antisites (XY) in PbSe and PbTe are investigated. PbSe and PbTe are narrow band gap semiconductors and have the potential to be used in infrared detectors, laser, and diodes. They are also of special interest for thermoelectric devices (TE). The calculations are based in the Density Functional Theory (DFT) and the General Gradient Approximation (GGA) for the exchange-correlation term, as implemented in the VASP code. The core and valence electrons are described by the Projected Augmented Wave (PAW) and the Plane Wave (PW) methods, respectively. The defects are studied in the bulk and nanowire (NW) system. Our results show that intrinsec defects (vacancies and antisites) in PbTe have lower formation energies in the NW as compared to the bulk and present a trend in migrate to the surface of the NW. For the PbSe we obtain similar results when compare the formation energy for the bulk and NW. However, the Pb vacancy and the antisites are more stable in the core of the NW. The intrinsec defects are shallow defects for the bulk system. For both PbSe and PbTe VPb is a shallow acceptor defect and VSe and VT e are shallow donor defects for the PbSe and PbTe, respectively. Similar electronic properties are observed for the antisites. For the Pb in the anion site we obtain an n-type semiconductor for both PbSe and PbTe, SeP b is a p-type for the PbSe, and T eP b is a n-type for PbTe. Due the quantum con¯nement effects present in the NW (the band gap open), these defects have different electronic properties for the NW as compared to the bulk. Now these defects give rise to electronic levels in the band gap of the PbTe NW and the VT e present a metallic character. For the PbSe NW a p-type and a n-type semiconductor is obtained for the VP b and P bSe, respectively. On the other hand, deep electronic levels are present in the band gap for the VSe and SePb. These results show that due an enhanced in the electronic density of states (DOS) near the Fermi energy, the defective PbSe and PbTe are candidates for efficient TE devices.