20 resultados para GENERALIZED PHASE-SPACE

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

Dynamical properties for a beam light inside a sinusoidally corrugated waveguide are discussed in this paper. The beam is confined inside two-mirrors: one is flat and the other one is sinusoidally corrugated. The evolution of the system is described by the use of a two-dimensional and nonlinear mapping. The phase space of the system is of mixed type therefore exhibiting a large chaotic sea, periodic islands and invariant KAM curves. A careful discussion of the numerical method to solve the transcendental equations of the mapping is given. We characterize the probability of observing successive reflections of the light by the corrugated mirror and show that it is scaling invariant with respect to the amplitude of the corrugation. Average properties of the chaotic sea are also described by the use of scaling arguments.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The global attractor of a gradient-like semigroup has a Morse decomposition. Associated to this Morse decomposition there is a Lyapunov function (differentiable along solutions)-defined on the whole phase space- which proves relevant information on the structure of the attractor. In this paper we prove the continuity of these Lyapunov functions under perturbation. On the other hand, the attractor of a gradient-like semigroup also has an energy level decomposition which is again a Morse decomposition but with a total order between any two components. We claim that, from a dynamical point of view, this is the optimal decomposition of a global attractor; that is, if we start from the finest Morse decomposition, the energy level decomposition is the coarsest Morse decomposition that still produces a Lyapunov function which gives the same information about the structure of the attractor. We also establish sufficient conditions which ensure the stability of this kind of decomposition under perturbation. In particular, if connections between different isolated invariant sets inside the attractor remain under perturbation, we show the continuity of the energy level Morse decomposition. The class of Morse-Smale systems illustrates our results.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In general the term "Lagrangian coherent structure" (LCS) is used to make reference about structures whose properties are similar to a time-dependent analog of stable and unstable manifolds from a hyperbolic fixed point in Hamiltonian systems. Recently, the term LCS was used to describe a different type of structure, whose properties are similar to those of invariant tori in certain classes of two-dimensional incompressible flows. A new kind of LCS was obtained. It consists of barriers, called robust tori that block the trajectories in certain regions of the phase space. We used the Double-Gyre Flow system as the model. In this system, the robust tori play the role of a skeleton for the dynamics and block, horizontally, vortices that come from different parts of the phase space. (C) 2012 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Some phase space transport properties for a conservative bouncer model are studied. The dynamics of the model is described by using a two-dimensional measure preserving mapping for the variables' velocity and time. The system is characterized by a control parameter epsilon and experiences a transition from integrable (epsilon = 0) to nonintegrable (epsilon not equal 0). For small values of epsilon, the phase space shows a mixed structure where periodic islands, chaotic seas, and invariant tori coexist. As the parameter epsilon increases and reaches a critical value epsilon(c), all invariant tori are destroyed and the chaotic sea spreads over the phase space, leading the particle to diffuse in velocity and experience Fermi acceleration (unlimited energy growth). During the dynamics the particle can be temporarily trapped near periodic and stable regions. We use the finite time Lyapunov exponent to visualize this effect. The survival probability was used to obtain some of the transport properties in the phase space. For large epsilon, the survival probability decays exponentially when it turns into a slower decay as the control parameter epsilon is reduced. The slower decay is related to trapping dynamics, slowing the Fermi Acceleration, i.e., unbounded growth of the velocity.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

In this paper we study how deterministic features presented by a system can be used to perform direct transport in a quasisymmetric potential and weak dissipative system. We show that the presence of nonhyperbolic regions around acceleration areas of the phase space plays an important role in the acceleration of particles giving rise to direct transport in the system. Such an effect can be observed for a large interval of the weak asymmetric potential parameter allowing the possibility to obtain useful work from unbiased nonequilibrium fluctuation in real systems even in a presence of a quasisymmetric potential.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We discuss an algorithmic framework based on efficient graph algorithms and algebraic-topological computational tools. The framework is aimed at automatic computation of a database of global dynamics of a given m-parameter semidynamical system with discrete time on a bounded subset of the n-dimensional phase space. We introduce the mathematical background, which is based upon Conley's topological approach to dynamics, describe the algorithms for the analysis of the dynamics using rectangular grids both in phase space and parameter space, and show two sample applications. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4767672]

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The main goal of this paper is to derive long time estimates of the energy for the higher order hyperbolic equations with time-dependent coefficients. in particular, we estimate the energy in the hyperbolic zone of the extended phase space by means of a function f (t) which depends on the principal part and on the coefficients of the terms of order m - 1. Then we look for sufficient conditions that guarantee the same energy estimate from above in all the extended phase space. We call this class of estimates hyperbolic-like since the energy behavior is deeply depending on the hyperbolic structure of the equation. In some cases, these estimates produce a dissipative effect on the energy. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

20 years after the discovery of the first planets outside our solar system, the current exoplanetary population includes more than 700 confirmed planets around main sequence stars. Approximately 50% belong to multiple-planet systems in very diverse dynamical configurations, from two-planet hierarchical systems to multiple resonances that could only have been attained as the consequence of a smooth large-scale orbital migration. The first part of this paper reviews the main detection techniques employed for the detection and orbital characterization of multiple-planet systems, from the (now) classical radial velocity (RV) method to the use of transit time variations (TTV) for the identification of additional planetary bodies orbiting the same star. In the second part we discuss the dynamical evolution of multi-planet systems due to their mutual gravitational interactions. We analyze possible modes of motion for hierarchical, secular or resonant configurations, and what stability criteria can be defined in each case. In some cases, the dynamics can be well approximated by simple analytical expressions for the Hamiltonian function, while other configurations can only be studied with semi-analytical or numerical tools. In particular, we show how mean-motion resonances can generate complex structures in the phase space where different libration islands and circulation domains are separated by chaotic layers. In all cases we use real exoplanetary systems as working examples.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We analyze the behavior of a relativistic particle moving under the influence of a uniform magnetic field and a stationary electrostatic wave. We work with a set of pulsed waves that allows us to obtain an exact map for the system. We also use a method of control for near-integrable Hamiltonians that consists of the addition of a small and simple control term to the system. This control term creates invariant tori in phase space that prevent chaos from spreading to large regions, making the controlled dynamics more regular. We show numerically that the control term just slightly modifies the system but is able to drastically reduce chaos with a low additional cost of energy. Moreover, we discuss how the control of chaos and the consequent recovery of regular trajectories in phase space are useful to improve regular particle acceleration.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The escape dynamics of a classical light ray inside a corrugated waveguide is characterised by the use of scaling arguments. The model is described via a two-dimensional nonlinear and area preserving mapping. The phase space of the mapping contains a set of periodic islands surrounded by a large chaotic sea that is confined by a set of invariant tori. When a hole is introduced in the chaotic sea, letting the ray escape, the histogram of frequency of the number of escaping particles exhibits rapid growth, reaching a maximum value at n(p) and later decaying asymptotically to zero. The behaviour of the histogram of escape frequency is characterised using scaling arguments. The scaling formalism is widely applicable to critical phenomena and useful in characterisation of phase transitions, including transitions from limited to unlimited energy growth in two-dimensional time varying billiard problems. (C) 2011 Elsevier B.V. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

We obtain boundedness and asymptotic behavior of solutions for semilinear functional difference equations with infinite delay. Applications to Volterra difference equations with infinite delay are shown. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

Primary voice production occurs in the larynx through vibrational movements carried out by vocal folds. However, many problems can affect this complex system resulting in voice disorders. In this context, time-frequency-shape analysis based on embedding phase space plots and nonlinear dynamics methods have been used to evaluate the vocal fold dynamics during phonation. For this purpose, the present work used high-speed video to record the vocal fold movements of three subjects and extract the glottal area time series using an image segmentation algorithm. This signal is used for an optimization method which combines genetic algorithms and a quasi-Newton method to optimize the parameters of a biomechanical model of vocal folds based on lumped elements (masses, springs and dampers). After optimization, this model is capable of simulating the dynamics of recorded vocal folds and their glottal pulse. Bifurcation diagrams and phase space analysis were used to evaluate the behavior of this deterministic system in different circumstances. The results showed that this methodology can be used to extract some physiological parameters of vocal folds and reproduce some complex behaviors of these structures contributing to the scientific and clinical evaluation of voice production. (C) 2010 Elsevier Inc. All rights reserved.

Relevância:

40.00% 40.00%

Publicador:

Resumo:

Non-commutative geometry indicates a deformation of the energy-momentum dispersion relation f (E) = E/pc (not equal 1) for massless particles. This distorted energy-momentum relation can affect the radiation-dominated phase of the universe at sufficiently high temperature. This prompted the idea of non-commutative inflation by Alexander et al (2003 Phys. Rev. D 67 081301) and Koh and Brandenberger (2007 JCAP06(2007) 021 and JCAP11(2007) 013). These authors studied a one-parameter family of a non-relativistic dispersion relation that leads to inflation: the a family of curves f (E) = 1 + (lambda E)(alpha). We show here how the conceptually different structure of symmetries of non-commutative spaces can lead, in a mathematically consistent way, to the fundamental equations of non-commutative inflation driven by radiation. We describe how this structure can be considered independently of (but including) the idea of non-commutative spaces as a starting point of the general inflationary deformation of SL(2, C). We analyze the conditions on the dispersion relation that leads to inflation as a set of inequalities which plays the same role as the slow-roll conditions on the potential of a scalar field. We study conditions for a possible numerical approach to obtain a general one-parameter family of dispersion relations that lead to successful inflation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The main feature of partition of unity methods such as the generalized or extended finite element method is their ability of utilizing a priori knowledge about the solution of a problem in the form of enrichment functions. However, analytical derivation of enrichment functions with good approximation properties is mostly limited to two-dimensional linear problems. This paper presents a procedure to numerically generate proper enrichment functions for three-dimensional problems with confined plasticity where plastic evolution is gradual. This procedure involves the solution of boundary value problems around local regions exhibiting nonlinear behavior and the enrichment of the global solution space with the local solutions through the partition of unity method framework. This approach can produce accurate nonlinear solutions with a reduced computational cost compared to standard finite element methods since computationally intensive nonlinear iterations can be performed on coarse global meshes after the creation of enrichment functions properly describing localized nonlinear behavior. Several three-dimensional nonlinear problems based on the rate-independent J (2) plasticity theory with isotropic hardening are solved using the proposed procedure to demonstrate its robustness, accuracy and computational efficiency.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Oriocrassatella Etheridge Jr., 1907 is a long range crassatellid bivalve genus well recognized in shallow waters of epeiric seas throughout the upper part of Paleozoic. The first occurrences of this genus are recorded in the sedimentary successions of the Gondwana, both in Australia and South America. However, the geographic and age distribution of Oriocrassatella in Late Mississippian deposits of Australia and Argentina may indicate an earliest Visean or even a pre-Visean origin for the genus. Following its origin in Early Carboniferous a complex paleobiogeographic history from Southern to Northern Hemisphere took place in the Permian. During its initial dispersal phase from Late Carboniferous to the Early Permian the genus thrived in cold water environments associated to the Late Paleozoic Gondwana glaciation. Shallow-water bottoms of the warm waters of the central Gondwana fringe and Laurussia were colonized by Oriocrassatella only during Early Permian times when the genus became cosmopolitan. A new species of this genus is described herein, Oriocrassatella piauiensis n. sp., recorded from the Piaui Formation, Pennsylvanian of the Parnaiba Basin. This new species may represent an early adaptation to warm waters. However, based on available data, species of this genus seem to have adapted definitely to warm water environments probably related the Late Pennsylvanian interglacial phases. In these phases, climatic barrier were interrupted allowing the faunal interchange and larval dispersion following a South to North migration route through the eastern margins of Gondwana and the eastern Paleotethys.