5 resultados para G1 Phase
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
DNA damage induced by ultraviolet (UV) radiation can be removed by nucleotide excision repair through two sub-pathways, one general (GGR) and the other specific for transcribed DNA (TCR), and the processing of unrepaired lesions trigger signals that may lead to cell death. These signals involve the tumor suppressor p53 protein, a central regulator of cell responses to DNA damage, and the E3 ubiquitin ligase Mdm2, that forms a feedback regulatory loop with p53. The involvement of cell cycle and transcription on the signaling to apoptosis was investigated in UVB-irradiated synchronized, DNA repair proficient, CS-B (TCR-deficient) and XP-C (GGR-deficient) primary human fibroblasts. Cells were irradiated in the G1 phase of the cell cycle, with two doses with equivalent levels of apoptosis (low and high), defined for each cell line. In the three cell lines, the low doses of UVB caused only a transient delay in progression to the S phase, whereas the high doses induced permanent cell cycle arrest. However, while accumulation of Mdm2 correlated well with the recovery from transcription inhibition at the low doses for normal and CS-B fibroblasts, for XP-C cells this protein was shown to be accumulated even at UVB doses that induced high levels of apoptosis. Thus, UVB-induced accumulation of Mdm2 is critical for counteracting p53 activation and apoptosis avoidance, but its effect is limited due to transcription inhibition. However, in the case of XP-C cells, an excess of unrepaired DNA damage would be sufficient to block S phase progression, which would signal to apoptosis, independent of Mdm2 accumulation. The data clearly discriminate DNA damage signals that lead to cell death, depending on the presence of UVB-induced DNA damage in replicating or transcribing regions.
Resumo:
The histomorphometric and proliferative characteristics of the collared peccary (Tayassu tajacu) placenta and uterus were analyzed. The material was examined by standard histological techniques and histochemistry (PAS, Perls and Alcian Blue pH 0.5 and 2.5%) and the cellular proliferation by AgNORs and flow cytometry. All the analyzed morphometric variables differed between pregnant and non-pregnant uteri in the luteal phase using the Dunnet test. Height and gland diameter of uterine glands increased linearly during pregnancy, with an intense positive PAS and Perls reaction in all stages. The cells with more than seven AgNORs per nuclei and the cells in the G2M cell cycle phase in the maternal tissue also increased after 70 days of pregnancy. The uteroplacental ridges had a linear increase in size with two distinct areas, base and top, with uterine epithelium and trophoblastic cells changing their morphology following the placental ridge development. Flow cytometry analysis showed the percentage of cells in each cell cycle phase with a quadratic behavior for stages G2/M in the maternal tissue, suggesting an increase in proliferative capacity of maternal tissue after 65 days of pregnancy. The same quadratic effect was observed in the G0/G1 phase in both maternal and fetal tissues. Cells in apoptosis showed cubic behavior in both tissues. The morphometric and cellular dynamic aspects observed in this study have not been previously described and they extend our knowledge of functions relating to maternal-fetal dynamics in this species.
Resumo:
Amblyomin-X is a Kunitz-type serine protease inhibitor (Kunitz-type SPI) designed from the cDNA library of the Amblyomma cajennense tick, which displays in vivo anti-tumor activities. Here, the mechanisms of actions of Amblyomin-X in vascular endothelial growth factor A (VEGF-A)-induced angiogenesis were characterized. Topical application of Amblyomin-X (10 or 100 ng/10 mu l; each 48 h) inhibited VEGF-A-induced (10 ng/10 mu l; each 48 h) angiogenesis in the dorsal subcutaneous tissue in male Swiss mice. Moreover, similar effect was observed in the VEGF-A-induced angiogenesis in the chicken chorioallantoic membrane (CAM). Additional in vitro assays in t-End cells showed that Amblyomin-X treatment delayed the cell cycle, by maintaining them in G0/G1 phase, and inhibited cell proliferation and adhesion, tube formation and membrane expression of the adhesion molecule platelet-endothelial cell adhesion molecule-1 (PECAM-I), regardless of mRNA synthesis. Together, results herein reveal the role of Kunitz-type SPI on in vivo VEGF-A-induced angiogenesis, by exerting modulatory actions on endothelial cell proliferation and adhesion, especially on membrane expression of PECAM-1. These data provide further mechanisms of actions of Kunitz-type SPI, corroborating their relevance as scientific tools in the design of therapeutic molecules. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background Human homeobox genes encode nuclear proteins that act as transcription factors involved in the control of differentiation and proliferation. Currently, the role of these genes in development and tumor progression has been extensively studied. Recently, increased expression of HOXB7 homeobox gene (HOXB7) in pancreatic ductal adenocarcinomas (PDAC) was shown to correlate with an invasive phenotype, lymph node metastasis and worse survival outcomes, but no influence on cell proliferation or viability was detected. In the present study, the effects arising from the knockdown of HOXB7 in PDAC cell lines was investigated. Methods Real time quantitative PCR (qRT-PCR) (Taqman) was employed to assess HOXB7 mRNA expression in 29 PDAC, 6 metastatic tissues, 24 peritumoral tissues and two PDAC cell lines. siRNA was used to knockdown HOXB7 mRNA in the cell lines and its consequences on apoptosis rate and cell proliferation were measured by flow cytometry and MTT assay respectively. Results Overexpression of HOXB7 mRNA was observed in the tumoral tissues and in the cell lines MIA PaCa-2 and Capan-1. HOXB7 knockdown elicited (1) an increase in the expression of the pro-apoptotic proteins BAX and BAD in both cell lines; (2) a decrease in the expression of the anti-apoptotic protein BCL-2 and in cyclin D1 and an increase in the number of apoptotic cells in the MIA PaCa-2 cell line; (3) accumulation of cell in sub-G1 phase in both cell lines; (4) the modulation of several biological processes, especially in MIA PaCa-2, such as proteasomal ubiquitin-dependent catabolic process and cell cycle. Conclusion The present study confirms the overexpression of HOXB7 mRNA expression in PDAC and demonstrates that decreasing its protein level by siRNA could significantly increase apoptosis and modulate several biological processes. HOXB7 might be a promising target for future therapies.
Resumo:
We conducted a phase I, double-blind, placebo-controlled trial to evaluate a new 5-valent oral rotavirus vaccine’s safety and immunogenicity profiles. Subjects were randomly assigned to receive 3 orally administered doses of a live-attenuated human-bovine (UK) reassortant rotavirus vaccine, containing five viral antigens (G1, G2, G3, G4 and G9), or a placebo. The frequency and severity of adverse events were assessed. Immunogenicity was evaluated by the titers of anti-rotavirus IgA and the presence of neutralizing antibodies anti-rotavirus. No severe adverse events were observed. There was no difference in the frequency of mild adverse events between experimental and control groups. The proportion of seroconversion was consistently higher in the vaccine group, for all serotypes, after each one of the doses. The 5-valent vaccine has shown a good profile of safety and immunogenicity in this small sample of adult volunteers.