7 resultados para Functional network

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

30.00% 30.00%

Publicador:

Resumo:

The objective of this study was to identify the relationship between social support and the functional capacity of elderly persons with cognitive alterations. It is a descriptive, cross-sectional and quantitative study. The subjects were 101 elderly persons registered in Family Health Centers whose performance in the Mini-Exam for Mental Status was below a certain specified level in a previous study. The Medical Outcomes Study questionnaire, Katz Index and Pfeffer Questionnaire were applied. The dimensions of material, affective, emotional, informational and positive social interaction support resulted in an average final score of 74.32 points, indicating a better level of material and affective support in relation to the other dimensions of support. There was a statistically significant correlation between emotional support and the Katz Index. Knowledge about this relationship favors the development of a nursing care pathway for the elderly which is capable of maintaining their functional capacity and ensuring satisfactory social relations.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Vaquero AR, Ferreira NE, Omae SV, Rodrigues MV, Teixeira SK, Krieger JE, Pereira AC. Using gene-network landscape to dissect genotype effects of TCF7L2 genetic variant on diabetes and cardiovascular risk. Physiol Genomics 44: 903-914, 2012. First published August 7, 2012; doi:10.1152/physiolgenomics.00030.2012.-The single nucleotide polymorphism (SNP) within the TCF7L2 gene, rs7903146, is, to date, the most significant genetic marker associated with Type 2 diabetes mellitus (T2DM) risk. Nonetheless, its functional role in disease pathology is poorly understood. The aim of the present study was to investigate, in vascular smooth muscle cells from 92 patients undergoing aortocoronary bypass surgery, the contribution of this SNP in T2DM using expression levels and expression correlation comparison approaches, which were visually represented as gene interaction networks. Initially, the expression levels of 41 genes (seven TCF7L2 splice forms and 40 other T2DM relevant genes) were compared between rs7903146 wild-type (CC) and T2DM-risk (CT + TT) genotype groups. Next, we compared the expression correlation patterns of these 41 genes between groups to observe if the relationships between genes were different. Five TCF7L2 splice forms and nine genes showed significant expression differences between groups. RXR alpha gene was pinpointed as showing the most different expression correlation pattern with other genes. Therefore, T2DM risk alleles appear to be influencing TCF7L2 splice form's expression in vascular smooth muscle cells, and RXR alpha gene is pointed out as a treatment target candidate for risk reduction in individuals with high risk of developing T2DM, especially individuals harboring TCF7L2 risk genotypes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

To understand the regulatory dynamics of transcription factors (TFs) and their interplay with other cellular components we have integrated transcriptional, protein-protein and the allosteric or equivalent interactions which mediate the physiological activity of TFs in Escherichia coli. To study this integrated network we computed a set of network measurements followed by principal component analysis (PCA), investigated the correlations between network structure and dynamics, and carried out a procedure for motif detection. In particular, we show that outliers identified in the integrated network based on their network properties correspond to previously characterized global transcriptional regulators. Furthermore, outliers are highly and widely expressed across conditions, thus supporting their global nature in controlling many genes in the cell. Motifs revealed that TFs not only interact physically with each other but also obtain feedback from signals delivered by signaling proteins supporting the extensive cross-talk between different types of networks. Our analysis can lead to the development of a general framework for detecting and understanding global regulatory factors in regulatory networks and reinforces the importance of integrating multiple types of interactions in underpinning the interrelationships between them.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Prostate cancer is a leading cause of death in the male population, therefore, a comprehensive study about the genes and the molecular networks involved in the tumoral prostate process becomes necessary. In order to understand the biological process behind potential biomarkers, we have analyzed a set of 57 cDNA microarrays containing ~25,000 genes. Results Principal Component Analysis (PCA) combined with the Maximum-entropy Linear Discriminant Analysis (MLDA) were applied in order to identify genes with the most discriminative information between normal and tumoral prostatic tissues. Data analysis was carried out using three different approaches, namely: (i) differences in gene expression levels between normal and tumoral conditions from an univariate point of view; (ii) in a multivariate fashion using MLDA; and (iii) with a dependence network approach. Our results show that malignant transformation in the prostatic tissue is more related to functional connectivity changes in their dependence networks than to differential gene expression. The MYLK, KLK2, KLK3, HAN11, LTF, CSRP1 and TGM4 genes presented significant changes in their functional connectivity between normal and tumoral conditions and were also classified as the top seven most informative genes for the prostate cancer genesis process by our discriminant analysis. Moreover, among the identified genes we found classically known biomarkers and genes which are closely related to tumoral prostate, such as KLK3 and KLK2 and several other potential ones. Conclusion We have demonstrated that changes in functional connectivity may be implicit in the biological process which renders some genes more informative to discriminate between normal and tumoral conditions. Using the proposed method, namely, MLDA, in order to analyze the multivariate characteristic of genes, it was possible to capture the changes in dependence networks which are related to cell transformation.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Recently, it was realized that the functional connectivity networks estimated from actual brain-imaging technologies (MEG, fMRI and EEG) can be analyzed by means of the graph theory, that is a mathematical representation of a network, which is essentially reduced to nodes and connections between them. Methods We used high-resolution EEG technology to enhance the poor spatial information of the EEG activity on the scalp and it gives a measure of the electrical activity on the cortical surface. Afterwards, we used the Directed Transfer Function (DTF) that is a multivariate spectral measure for the estimation of the directional influences between any given pair of channels in a multivariate dataset. Finally, a graph theoretical approach was used to model the brain networks as graphs. These methods were used to analyze the structure of cortical connectivity during the attempt to move a paralyzed limb in a group (N=5) of spinal cord injured patients and during the movement execution in a group (N=5) of healthy subjects. Results Analysis performed on the cortical networks estimated from the group of normal and SCI patients revealed that both groups present few nodes with a high out-degree value (i.e. outgoing links). This property is valid in the networks estimated for all the frequency bands investigated. In particular, cingulate motor areas (CMAs) ROIs act as ‘‘hubs’’ for the outflow of information in both groups, SCI and healthy. Results also suggest that spinal cord injuries affect the functional architecture of the cortical network sub-serving the volition of motor acts mainly in its local feature property. In particular, a higher local efficiency El can be observed in the SCI patients for three frequency bands, theta (3-6 Hz), alpha (7-12 Hz) and beta (13-29 Hz). By taking into account all the possible pathways between different ROI couples, we were able to separate clearly the network properties of the SCI group from the CTRL group. In particular, we report a sort of compensatory mechanism in the SCI patients for the Theta (3-6 Hz) frequency band, indicating a higher level of “activation” Ω within the cortical network during the motor task. The activation index is directly related to diffusion, a type of dynamics that underlies several biological systems including possible spreading of neuronal activation across several cortical regions. Conclusions The present study aims at demonstrating the possible applications of graph theoretical approaches in the analyses of brain functional connectivity from EEG signals. In particular, the methodological aspects of the i) cortical activity from scalp EEG signals, ii) functional connectivity estimations iii) graph theoretical indexes are emphasized in the present paper to show their impact in a real application.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Abstract Background Intronic and intergenic long noncoding RNAs (lncRNAs) are emerging gene expression regulators. The molecular pathogenesis of renal cell carcinoma (RCC) is still poorly understood, and in particular, limited studies are available for intronic lncRNAs expressed in RCC Methods Microarray experiments were performed with custom-designed arrays enriched with probes for lncRNAs mapping to intronic genomic regions. Samples from 18 primary RCC tumors and 11 nontumor adjacent matched tissues were analyzed. Meta-analyses were performed with microarray expression data from three additional human tissues (normal liver, prostate tumor and kidney nontumor samples), and with large-scale public data for epigenetic regulatory marks and for evolutionarily conserved sequences. Results A signature of 29 intronic lncRNAs differentially expressed between RCC and nontumor samples was obtained (false discovery rate (FDR) <5%). A signature of 26 intronic lncRNAs significantly correlated with the RCC five-year patient survival outcome was identified (FDR <5%, p-value ≤0.01). We identified 4303 intronic antisense lncRNAs expressed in RCC, of which 22% were significantly (p <0.05) cis correlated with the expression of the mRNA in the same locus across RCC and three other human tissues. Gene Ontology (GO) analysis of those loci pointed to 'regulation of biological processes’ as the main enriched category. A module map analysis of the protein-coding genes significantly (p <0.05) trans correlated with the 20% most abundant lncRNAs, identified 51 enriched GO terms (p <0.05). We determined that 60% of the expressed lncRNAs are evolutionarily conserved. At the genomic loci containing the intronic RCC-expressed lncRNAs, a strong association (p <0.001) was found between their transcription start sites and genomic marks such as CpG islands, RNA Pol II binding and histones methylation and acetylation. Conclusion Intronic antisense lncRNAs are widely expressed in RCC tumors. Some of them are significantly altered in RCC in comparison with nontumor samples. The majority of these lncRNAs is evolutionarily conserved and possibly modulated by epigenetic modifications. Our data suggest that these RCC lncRNAs may contribute to the complex network of regulatory RNAs playing a role in renal cell malignant transformation.