7 resultados para Functional Assay
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Characterization of the matrix metalloproteinase-2 (MMP-2) substrates and understanding of its function remain difficult because up to date preparations containing minor amounts of other eukaryotic proteins that are co-purified with MMP-2 are still used. In this work, the expression of a soluble and functional full-length recombinant human MMP-2 (rhMMP-2) in the cytoplasm of Escherichia coli is reported, and the purification of this metalloproteinase is described. Culture of this bacterium at 18 degrees C culminated in maintenance of the soluble and functional rhMMP-2 in the soluble fraction of the E. coli lysate and its purification by affinity with gelatin-sepharose yielded approximately 0.12 mg/L of medium. Western Blotting and zymographic analysis revealed that the most abundant form was the 72-kDa MMP-2, but some gelatinolytic bands corresponding to proteins with lower molecular weight were also detected. The obtained rhMMP-2 was demonstrated to be functional in a gelatinolytic fluorimetric assay, suggesting that the purified rhMMP-2 was correctly folded. The method described here involves fewer steps, is less expensive, and is less prone to contamination with other proteinases and MMP inhibitors as compared to expression of rhMMP-2 in eukaryotic tissue culture. This protocol will facilitate the use of the full-length rhMMP-2 expressed in bacteria and will certainly help researchers to acquire new knowledge about the substrates and biological activities of this important proteinase. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The adipose tissue expansion is accompanied by remodeling of extracellular matrix performed by matrix metalloproteinases (MMPs). Higher plasma and tissue MMP-9 levels are found in obese; therefore, we evaluated if the functional C-1562T polymorphism (rs3918242) located in promoter region of the MMP-9 gene is associated with obesity in women. We studied 112 lean and 114 obese women. Plasma MMP-9 and tissue inhibitor of MMP-9 (TIMP)-1 were measured using enzyme-linked immunosorbent assay. We found different genotype frequencies between lean and obese women (p = 0.008), prevailing T-allele in obese (2.3-fold). However, although obese women present higher levels of plasma MMP-9, lack of modulation by the polymorphism was found (all p > 0.05). Our findings suggest that C-1562T polymorphism may contribute to pathogenetic mechanisms involved in the development of obesity in women.
Resumo:
BACKGROUND: Only about 15% of donor lungs are considered suitable for transplantation (LTx). Ex vivo lung perfusion (EVLP) has been developed as a method to reassess and repair damaged lungs. We report our experience with EVLP in non-acceptable donor lungs and evaluate its ability to recondition these lungs. METHODS: We studied lungs from 16 brain-dead donors rejected for LTx. After harvesting, the lungs were stored at 4 degrees C for 10 hours and subjected to normothermic EVLP with Steen Solution (Vitro life, Goteborg, Sweden) for 60 minutes. For functional evaluation, the following variables were assessed: partial pressure of arterial oxygen (Pao(2)), pulmonary vascular resistance (PVR), and lung compliance (LC). For histologic assessment, lung biopsy was done before harvest and after EVLP. Tissue samples were examined under light microscopy. To detect and quantify apoptosis, terminal deoxynucleotide transferase-mediated deoxy uridine triphosphate nick-end labeling assay was used. RESULTS: Thirteen lima donors were refused for having impaired lung function. The mean Pao(2) obtained in the organ donor at the referring hospital was 193.7 mm Hg and rose to 489 mm Hg after EVLP. During EVLP, the mean PVR was 652.5 dynes/sec/cm(5) and the mean LC was 48 ml/cm H2O. There was no significant difference between the mean Lung Injury Score before harvest and after EVLP. There was a trend toward a reduction in the median number of apoptotic cells after EVLP. CONCLUSIONS: EVLP improved lung function (oxygenation capacity) of organs considered unsuitable for transplantation. Lung tissue structure did not deteriorate even after 1 hour of normothermic perfusion. J Heart Lung Transplant 2012;31:305-9 (C) 2012 International Society for Heart and Lung Transplantation. All rights reserved.
Resumo:
The aim of this study was the isolation of the LAAO from Lachesis muta venom (LmLAAO) and its biochemical, functional and structural characterization. Two different purification protocols were developed and both provided highly homogeneous and active LmLAAO. It is a homodimeric enzyme with molar mass around 120 kDa under non-reducing conditions, 60 kDa under reducing conditions in SDS-PAGE and 60852 Da by mass spectrometry. Forty amino acid residues were directly sequenced from LmLAAO and its complete cDNA was identified and characterized from an Expressed Sequence Tags data bank obtained from a venom gland. A model based on sequence homology was manually built in order to predict its three-dimensional structure. LmLAAO showed a catalytic preference for hydrophobic amino acids (K-m of 0.97 mmol/L with Leu). A mild myonecrosis was observed histologically in mice after injection of 100 mu g of LmLAAO and confirmed by a 15-fold increase in CK activity. LmLAAO induced cytotoxicity on AGS cell line (gastric adenocarcinoma, IC50: 22.7 mu g/mL) and on MCF-7 cell line (breast adenocarcinoma, IC50:1.41 mu g/mL). It presents antiparasitic activity on Leishmania brasiliensis (IC50: 2.22 mu g/nnL), but Trypanosoma cruzi was resistant to LmLAAO. In conclusion, LmLAAO showed low systemic toxicity but important in vitro pharmacological actions. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
Background: Altered levels of matrix metalloproteinases (MMPs) and their inhibitors, the tissue inhibitors of metalloproteinases (TIMPs), are involved in cardiovascular alterations associated with end stage kidney disease (ESKD). Genetic polymorphisms in MMP-9 gene affect MMP-9 levels. We examined how MMP-9 polymorphisms and haplotypes affect the changes in plasma MMP-9 and TIMP-1 levels found in patients with ESKD undergoing hemodialysis. Methods: We studied 94 ESKD patients undergoing hemodialysis for at least 3 months. MMP-9 and TIMP-1 were measured by ELISA in plasma from blood samples collected before and after a session of hemodialysis. Genotypes for three MMP-9 polymorphisms (C-1562T, rs3918242; -90 (CA)(14-24), rs2234681; and Q279R, rs17576) were determined by Taqman (R) Allele Discrimination Assay and real-time polymerase chain reaction. Haplotype frequencies were determined with the software program PHASE 2.1. Results: Hemodialysis increased MMP-9 and TIMP-1 levels (P<0.05). Genotypes had no effects on baseline MMP-9 and TIMP-1 levels (P>0.05). Hemodialysis increased MMP-9 and TIMP-1 levels in subjects with the CC (but not CT or TT) genotype for the C-1562T polymorphism (P<0.05), and increased MMP-9 levels in subjects with the QQ (but not QR or RR) genotype for the Q279R polymorphism (P<0.05), whereas the CA(n)(14-24) polymorphism had no major effects. While MMP-9 haplotypes had no effects on baseline MMP-9 levels (P>0.05), hemodialysis increased MMP-9 levels and MMP-9/TIMP-1 ratios in subjects carrying the CLQ haplotype (P = 0.0012 and P = 0.0045, respectively). Conclusion: ESKD patients with the QQ genotype for the Q279R polymorphism or with the CLQ haplotype are exposed to more severe increases in MMP-9 levels after hemodialysis. Such patients may benefit from the use of MMP inhibitors. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Sandhoff disease (SD) is a lysosomal disorder caused by mutations in the HEXB gene. To date, 43 mutations of HEXB have been described, including 3 large deletions. Here, we have characterized 14 unrelated SD patients and developed a Multiplex Ligation-dependent Probe Amplification (MLPA) assay to investigate the presence of large HEXB deletions. Overall, we identified 16 alleles, 9 of which were novel, including 4 sequence variation leading to aminoacid changes [c.626C>T (p.T209I), c.634C>A (p.H212N), c.926G>T (p.C309F), c.1451G>A (p.G484E)] 3 intronic mutations (c.1082+5G>A, c.1242+1G>A, c.1169+5G>A), 1 nonsense mutation c.146C>A (p.S49X) and 1 small in-frame deletion c.1260_1265delAGTTGA (p.V421_E422del). Using the new MLPA assay, 2 previously described deletions were identified. In vitro expression studies showed that proteins bearing aminoacid changes p.T209I and p.G484E presented a very low or absent activity, while proteins bearing the p.H212N and p.C309F changes retained a significant residual activity. The detrimental effect of the 3 novel intronic mutations on the HEXB mRNA processing was demonstrated using a minigene assay. Unprecedentedly, minigene studies revealed the presence of a novel alternative spliced HEXB mRNA variant also present in normal cells. In conclusion, we provided new insights into the molecular basis of SD and validated an MLPA assay for detecting large HEXB deletions.
Resumo:
Previous studies have demonstrated that long chain fatty acids influence fibroblast function at sub-lethal concentrations. This study is the first to assess the effects of oleic, linoleic or palmitic acids on protein expression of fibroblasts, as determined by standard proteomic techniques. The fatty acids were not cytotoxic at the concentration used in this work as assessed by membrane integrity, DNA fragmentation and the MTT assay but significantly increased cell proliferation. Subsequently, a proteomic analysis was performed using two dimensional difference gel electrophoresis (2D-DIGE) and MS based identification. Cells treated with 50 μM oleic, linoleic or palmitic acid for 24 h were associated with 24, 22, 16 spots differentially expressed, respectively. Among the identified proteins, α-enolase and far upstream element binding protein 1 (FBP-1) are of importance due to their function in fibroblast-associated diseases. However, modulation of α-enolase and FBP-1 expression by fatty acids was not validated by the Western blot technique.