4 resultados para Fractais
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work presents a methodology to the morphology analysis and characterization of nanostructured material images acquired from FEG-SEM (Field Emission Gun-Scanning Electron Microscopy) technique. The metrics were extracted from the image texture (mathematical surface) by the volumetric fractal descriptors, a methodology based on the Bouligand-Minkowski fractal dimension, which considers the properties of the Minkowski dilation of the surface points. An experiment with galvanostatic anodic titanium oxide samples prepared in oxalyc acid solution using different conditions of applied current, oxalyc acid concentration and solution temperature was performed. The results demonstrate that the approach is capable of characterizing complex morphology characteristics such as those present in the anodic titanium oxide.
Resumo:
This work proposes a novel texture descriptor based on fractal theory. The method is based on the Bouligand- Minkowski descriptors. We decompose the original image recursively into four equal parts. In each recursion step, we estimate the average and the deviation of the Bouligand-Minkowski descriptors computed over each part. Thus, we extract entropy features from both average and deviation. The proposed descriptors are provided by concatenating such measures. The method is tested in a classification experiment under well known datasets, that is, Brodatz and Vistex. The results demonstrate that the novel technique achieves better results than classical and state-of-the-art texture descriptors, such as Local Binary Patterns, Gabor-wavelets and co-occurrence matrix.
Resumo:
This work proposes the application of fractal descriptors to the analysis of nanoscale materials under different experimental conditions. We obtain descriptors for images from the sample applying a multiscale transform to the calculation of fractal dimension of a surface map of such image. Particularly, we have used the Bouligand-Minkowski fractal dimension. We applied these descriptors to discriminate between two titanium oxide films prepared under different experimental conditions. Results demonstrate the discrimination power of proposed descriptors in such kind of application.
Resumo:
In this paper,we present a novel texture analysis method based on deterministic partially self-avoiding walks and fractal dimension theory. After finding the attractors of the image (set of pixels) using deterministic partially self-avoiding walks, they are dilated in direction to the whole image by adding pixels according to their relevance. The relevance of each pixel is calculated as the shortest path between the pixel and the pixels that belongs to the attractors. The proposed texture analysis method is demonstrated to outperform popular and state-of-the-art methods (e.g. Fourier descriptors, occurrence matrix, Gabor filter and local binary patterns) as well as deterministic tourist walk method and recent fractal methods using well-known texture image datasets.