16 resultados para Forest restoration

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

100.00% 100.00%

Publicador:

Resumo:

High-diversity reforestation can help jumpstart tropical forest restoration, but obtaining viable seedlings is a major constraint: if nurseries do not offer them, it is hard to plant all the species one would like. From 2007 to 2009, we investigated five different seed acquisition strategies employed by a well-established tree nursery in southeastern Brazil, namely (1) in-house seed harvesters; (2) hiring a professional harvester; (3) amateur seed harvesters; or (4) a seed production cooperative, as well as (5) participating in a seed exchange program. In addition, we evaluated two strategies not dependent on seeds: harvesting seedlings from native tree species found regenerating under Eucalyptus plantations, and in a native forest remnant. A total of 344 native tree and shrub species were collected as seeds or seedlings, including 2,465 seed lots. Among these, a subset of 120 species was obtained through seed harvesting in each year. Overall, combining several strategies for obtaining planting stocks was an effective way to increase species richness, representation of some functional groups (dispersal syndromes, planting group, and shade tolerance), and genetic diversity of seedlings produced in forest tree nurseries. Such outcomes are greatly desirable to support high-diversity reforestation as part of tropical forest restoration. In addition, community-based seed harvesting strategies fostered greater socioeconomic integration of traditional communities in restoration projects and programs, which is an important bottleneck for the advance of ecological restoration, especially in developing countries. Finally, we discuss some of the limitations of the various strategies for obtaining planting stocks and the way forward for their improvement.

Relevância:

100.00% 100.00%

Publicador:

Resumo:

The Brazilian Atlantic forest is considered one of the world's biodiversity conservation hotspot. Today there is less than ten percent remaining. Therefore it is necessary to restore these ecosystems. There are many ways of achieving restoration's main goals, but there is a lack of ecological studies that analyzes tree species richness as a variable. Thus, this study's goal is to investigate if there is a difference between a forest restoration in a gradient of tree species richness that varies from 20, 60 to 120 species, by using the litterfall as an indicator. Every month, for one year the forest litter was collected from litter traps that were previously installed. Results revealed that stands produced litterfall by the increasing gradient of species was of 5,370, 5,909 and 6,432 kg ha(-1) yr(-1). The statistical analyses revealed no significant difference among them. Therefore this six-year-old forest restoration plantation shows no difference on the litter production by the tree species richness.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.

Relevância:

70.00% 70.00%

Publicador:

Resumo:

The time required to regrowth a forest in degraded areas depends on how the forest is removed and on the type of land use following removal. Natural regeneration was studied in abandoned old fields after intensive agricultural land use in areas originally covered by Brazilian Atlantic Forests of the Anchieta Island, Brazil in order to understand how plant communities reassemble following human disturbances as well as to determine suitable strategies of forest restoration. The fields were classified into three vegetation types according to the dominant plant species in: 1) Miconia albicans (Sw.) Triana (Melastomataceae) fields, 2) Dicranopteris flexuosa (Schrader) Underw. (Gleicheniaceae) thickets, and 3) Gleichenella pectinata (Willd.) Ching. (Gleicheniaceae) thickets. Both composition and structure of natural regeneration were compared among the three dominant vegetation types by establishing randomly three plots of 1 x 3 m in five sites of the island. A gradient in composition and abundance of species in natural regeneration could be observed along vegetation types from Dicranopteris fern thickets to Miconia fields. The gradient did not accurately follow the pattern of spatial distribution of the three dominant vegetation types in the island regarding their proximity of the remnant forests. A complex association of biotic and abiotic factors seems to be affecting the seedling recruitment and establishment in the study plots. The lowest plant regeneration found in Dicranopteris and Gleichenella thickets suggests that the ferns inhibit the recruitment of woody and herbaceous species. Otherwise, we could not distinguish different patterns of tree regeneration among the three vegetation types. Our results showed that forest recovery following severe anthropogenic disturbances is not direct, predictable or even achievable on its own. Appropriated actions and methods such as fern removal, planting ground covers, and enrichment planting with tree species were suggested in order to restore the natural forest regeneration process in the abandoned old fields.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Regeneration microsites are characterized by diverse combinations of attributes which assure the best conditions for seed germination and seedling establishment. By understanding these attributes, we can contribute to determining better management methodologies for reestablishing ecological process in sites under restoration. Thus, we sought to characterize and differentiate the micro-site conditions of restoration plantings to indentify likely physical-chemical limitations for the establishment of native tree species in the forest understory. This study was carried out in reforestation plantings with different ages (10, 22 and 55 years). The physical-chemical characterization of the micro-site of regeneration of the study areas was carried out by evaluating the soil compression level, porosity, humidity, organic matter and nutrients content and granulometry, as well as litter dry mass and canopy cover. An increase on the canopy cover and soil porosity, humidity, clay and organic matter content were observed in the oldest restored areas, as well as a decrease in soil compression. Thus, these findings demonstrated that the evaluated microsite properties are in process of restoration. Therefore, microsite conditions for seedling establishment become even more similar to reference ecosystems as restoration planting evolve.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

We tested the early performance of 16 native early-, mid-, and late-successional tree species in response to four intensities of grass removal in an abandoned cattle pasture dominated by the introduced, invasive African grass, Cynodon plectostachyus, within the Lacandon rainforest region, southeast Mexico. The increase in grass removals significantly improved the performance of many species, especially of early-and mid-successional species, while performance of late-successional species was relatively poor and did not differ significantly among treatments. Good site preparation and at least one additional grass removal four months after seedling transplant were found to be essential; additional grass removals led to improved significantly performance of saplings in most cases. In order to evaluate the potential of transplanting tree seedlings successfully in abandoned tropical pastures, we developed a "planting risk index", combining field performance measurements and plantation cost estimations. Our results showed a great potential for establishing restoration plantings with many early-and mid-successional species. Although planting risk of late-successional species was considered high, certain species showed some possibilities of acclimation after 18 months and should be considered in future plantation arrangements in view of their long-term contributions to biodiversity maintenance and also to human welfare through delivery of ecosystem services. Conducting a planting risk analysis can help avoid failure of restoration strategies involving simultaneous planting of early-, mid-, and late-successional tree species. This in turn will improve cost-effectiveness of initial interventions in large-scale, long-term restoration programs.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

A recuperação e a restauração florestal de ecossistemas degradados podem não acontecer das maneiras desejadas se houver carência nutricional ou suprimento inadequado de nutrientes às plantas no estádio inicial de desenvolvimento de espécies florestais nativas. Objetivou-se nesta investigação avaliar os efeitos da deficiência de nutrientes em plantas jovens de aroeira-pimenteira (Schinus terebinthifolius Raddi). Para isso, induziu-se a sintomatologia de deficiência nutricional, determinaram-se os teores de nutrientes nas folhas e caules, e foi feita a avaliação do efeito da deficiência nutricional na altura, na produção de massa seca e no estoque de carbono do caule em plantas jovens de aroeira-pimenteira. O experimento foi conduzido em casa de vegetação, em blocos ao acaso, com três repetições, totalizando treze tratamentos, empregando a técnica de diagnose por subtração (-N, -P, -K, -Ca, -Mg, -S, -B, -Cu, -Fe, -Mn, -Mo, -Zn), sendo que em um dos tratamentos, as plantas foram cultivadas em solução nutritiva com todos nutrientes. Durante o experimento, observou-se que a deficiência nutricional, além de propiciar o aparecimento de sintomas de deficiência que prejudicam o desenvolvimento vegetal, comprometeu também a produção de massa de plantas jovens de aroeira-pimenteira. Estes resultados claramente evidenciam o fato de que projetos de implantação de florestas ou de recuperação e restauração de ecossistemas degradados que utilizem a aroeira-pimenteira, em solos que necessitem de suplementação nutricional, poderão ter seu sucesso comprometido se não houver a complementação nutricional necessária.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Background and aims Eucalyptus plantations cover 20 million hectares on highly weathered soils. Large amounts of nitrogen (N) exported during harvesting lead to concerns about their sustainability. Our goal was to assess the potential of introducing A. mangium trees in highly productive Eucalyptus plantations to enhance soil organic matter stocks and N availability. Methods A randomized block design was set up in a Brazilian Ferralsol soil to assess the effects of mono-specific Eucalyptus grandis (100E) and Acacia mangium (100A) stands and mixed plantations (50A:50E)on soil organic matter stocks and net N mineralization. Results A 6-year rotation of mono-specific A. mangium plantations led to carbon (C) and N stocks in the forest floor that were 44% lower and 86% higher than in pure E. grandis stands, respectively. Carbon and N stocks were not significantly different between the three treatments in the 0-15 cm soil layer. Field incubations conducted every 4 weeks for the two last years of the rotation estimated net soil N mineralization in 100A and 100E at 124 and 64 kg ha(-1) yr(-1), respectively. Nitrogen inputs to soil with litterfall were of the same order as net N mineralization. Conclusions Acacia mangium trees largely increased the turnover rate of N in the topsoil. Introducing A. mangium trees might improve mineral N availability in soils where commercial Eucalyptus plantations have been managed for a long time.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

O uso de plântulas da regeneração natural tem sido recomendado como estratégia para produção de mudas visando à restauração florestal, contudo muitos aspectos técnicos desse método ainda carecem de investigação científica. O objetivo deste trabalho foi avaliar o efeito da redução da área foliar e do transplantio imediato na sobrevivência e crescimento de mudas de espécies arbóreas produzidas a partir de plântulas obtidas da regeneração natural. Plântulas de Esenbeckia leiocarpa (Rutaceae), Eugenia ligustrina (Myrtaceae) e Maytenus salicifolia (Celastraceae), obtidas em remanescente de vegetação secundária de Floresta Estacional Semidecidual em Bofete, SP, foram extraídas do solo e submetidas aos tratamentos: I) redução de 50% da área de cada folha e transplantio imediato; II) nenhuma redução de área das folhas e transplantio imediato; III) redução de 50% da área de cada folha, manutenção das plântulas em água e transplantio 24 h após a coleta; e IV) nenhuma redução de área das folhas, manutenção das plântulas em água e transplantio 24 h após a coleta. As mudas foram avaliadas com relação à sobrevivência e ao crescimento em altura, ao longo de oito meses. Os resultados evidenciaram que nem o corte das folhas ou a manutenção das plântulas dentro de recipientes com água por 24 h antes do transplantio afetaram os parâmetros avaliados. Assim, para as espécies estudadas a redução da área foliar e o transplantio imediato são desnecessários para a produção de mudas em viveiro a partir de plântulas obtidas da regeneração natural.

Relevância:

60.00% 60.00%

Publicador:

Resumo:

Os microssítios de regeneração são caracterizados por diversas combinações de atributos que representam condições que influenciam a germinação de sementes e o estabelecimento de plântulas. O conhecimento desses atributos pode contribuir para a determinação de metodologias adequadas de manejo, visando ao restabelecimento dos processos ecológicos nas áreas em processo de restauração. Dessa forma, o objetivo deste trabalho foi caracterizar e diferenciar as condições físico-químicas de microssítios de regeneração de áreas em processo de restauração florestal, visando identificar possíveis limitações físicas e químicas ao estabelecimento de espécies arbóreas nativas no sub-bosque. O estudo foi desenvolvido em reflorestamentos de espécies nativas com diferentes idades (10, 22 e 55 anos). Foi realizada a avaliação do grau de compactação, porosidade, umidade, conteúdo de matéria orgânica e nutrientes e granulometria do solo, bem como a massa de matéria seca de serapilheira e a cobertura do dossel de cada área de estudo. Houve aumento da cobertura do dossel, da porosidade, da umidade, do conteúdo de argila, da matéria orgânica e de outros nutrientes, e uma diminuição da compactação do solo, com o aumento da idade da restauração. Assim, conclui-se que, com a evolução da restauração, as condições de microssítio de regeneração estão se assemelhando gradativamente às presentes nos ecossistemas de referência, sendo este um aspecto positivo para que o recrutamento de espécies nativas seja favorecido ao longo do tempo.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

The design of a network is a solution to several engineering and science problems. Several network design problems are known to be NP-hard, and population-based metaheuristics like evolutionary algorithms (EAs) have been largely investigated for such problems. Such optimization methods simultaneously generate a large number of potential solutions to investigate the search space in breadth and, consequently, to avoid local optima. Obtaining a potential solution usually involves the construction and maintenance of several spanning trees, or more generally, spanning forests. To efficiently explore the search space, special data structures have been developed to provide operations that manipulate a set of spanning trees (population). For a tree with n nodes, the most efficient data structures available in the literature require time O(n) to generate a new spanning tree that modifies an existing one and to store the new solution. We propose a new data structure, called node-depth-degree representation (NDDR), and we demonstrate that using this encoding, generating a new spanning forest requires average time O(root n). Experiments with an EA based on NDDR applied to large-scale instances of the degree-constrained minimum spanning tree problem have shown that the implementation adds small constants and lower order terms to the theoretical bound.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

There is now an extensive literature on extinction debt following deforestation. However, the potential for species credit in landscapes that have experienced a change from decreasing to expanding forest cover has received little attention. Both delayed responses should depend on current landscape forest cover and on species life-history traits, such as longevity, as short-lived species are likely to respond faster than long-lived species. We evaluated the effects of historical and present-day local forest cover on two vertebrate groups with different longevities understorey birds and non-flying small mammals - in forest patches at three Atlantic Forest landscapes. Our work investigated how the probability of extinction debt and species credit varies (i) amongst landscapes with different proportions of forest cover and distinct trajectories of forest cover change, and (ii) between taxa with different life spans. Our results suggest that the existence of extinction debt and species credit, as well as the potential for their future payment and/or receipt, is not only related to forest cover trajectory but also to the amount of remaining forest cover at the landscape scale. Moreover, differences in bird and small mammal life spans seem to be insufficient to affect differently their probability of showing time-delayed responses to landscape change. Synthesis and applications. Our work highlights the need for considering not only the trajectory of deforestation/regeneration but also the amount of forest cover at landscape scale when investigating time-delayed responses to landscape change. As many landscapes are experiencing a change from decreasing to expanding forest cover, understanding the association of extinction and immigration processes, as well as their interactions with the landscape dynamic, is a key factor to plan conservation and restoration actions in human-altered landscapes.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Litterfall and litter decomposition are vital processes in tropical forests because they regulate nutrient cycling. Nutrient cycling can be altered by forest fragmentation. The Atlantic Forest is one of the most threatened biomes in the world due to human occupation over the last 500 years. This scenario has resulted in fragments of different size, age and regeneration phase. To investigate differences in litterfall and leaf decomposition between forest successional phases, we compared six forest fragments at three different successional phases and an area of mature forest on the Atlantic Plateau of Sao Paulo, Brazil. We sampled litter monthly from November 2008 to October 2009. We used litterbags to calculate leaf decomposition rate of an exotic species, Tipuana tipu (Fabaceae), over the same period litter sampling was performed. Litterfall was higher in the earliest successional area. This pattern may be related to the structural properties of the forest fragments, especially the higher abundance of pioneer species, which have higher productivity and are typical of early successional areas. However, we have not found significant differences in the decomposition rates between the studied areas, which may be caused by rapid stabilization of the decomposition environment (combined effect of microclimatic conditions and the decomposers activities). This result indicates that the leaf decomposition process have already been restored to levels observed in mature forests after a few decades of regeneration, although litterfall has not been entirely restored. This study emphasizes the importance of secondary forests for restoration of ecosystem processes on a regional scale.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Almost two-thirds of the Brazilian territory still has prevalence of natural vegetation. Although not all pristine, much of these areas have high conservation value. 170 million hectare (Mha) of the natural vegetation is located within Federal and State protected areas. Most of the remaining 367 Mha is on private agriculture lands, where the Forest Act is the most important legal framework for conservation. In July 2010, the Brazilian parliament began the analysis of a substitutive legislation for the Forest Act. The main motivations for the revision is that, on the one hand, it has been found ineffective in protecting natural vegetation, and on the other hand, it is perceived as a barrier against development in the agriculture sector. The substitutive Forest Act, as it presently stands, does not represent a balance between existing standpoints and objectives; it may drive development towards either more private protection through market-driven compensation actions, or increased deforestation and less nature protection/restoration. This article uses outcomes from modeling analyses to discuss weaknesses of the substitutive Forest Act and to suggest possible improvements. (C) 2011 Elsevier Ltd. All rights reserved.

Relevância:

30.00% 30.00%

Publicador:

Resumo:

Tropical forests are experiencing an increase in the proportion of secondary forests as a result of the balance between the widespread harvesting of old-growth forests and the regeneration in abandoned areas. The impacts of such a process on biodiversity are poorly known and intensely debated. Recent reviews and multi-taxa studies indicate that species replacement in wildlife assemblages is a consistent pattern, sometimes stronger than changes in diversity, with a replacement from habitat generalists to old-growth specialists being commonly observed during tropical forest regeneration. However, the ecological drivers of such compositional changes are rarely investigated, despite its importance in assessing the conservation value of secondary forests, and to support and guide management techniques for restoration. By sampling 28 sites in a continuous Atlantic forest area in Southeastern Brazil, we assessed how important aspects of habitat structure and food resources for wildlife change across successional stages, and point out hypotheses on the implications of these changes for wildlife recovery. Old-growth areas presented a more complex structure at ground level (deeper leaf litter, and higher woody debris volume) and higher fruit availability from an understorey palm, whereas vegetation connectivity, ground-dwelling arthropod biomass, and total fruit availability were higher in earlier successional stages. From these results we hypothetize that generalist species adapted to fast population growth in resource-rich environments should proliferate and dominate earlier successional stages, while species with higher competitive ability in resource-limited environments, or those that depend on resources such as palm fruits, on higher complexity at the ground level, or on open space for flying, should dominate older-growth forests. Since the identification of the drivers of wildlife recovery is crucial for restoration strategies, it is important that future work test and further develop the proposed hypotheses. We also found structural and functional differences between old-growth forests and secondary forests with more than 80 years of regeneration, suggesting that restoration strategies may be crucial to recover structural and functional aspects expected to be important for wildlife in much altered ecosystems, such as the Brazilian Atlantic forest. (C) 2012 Elsevier B.V. All rights reserved.