3 resultados para Forensic anthropology|Toxicology|Surgery|Analytical chemistry
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
CHEMICAL AND PHYSICAL FACTORS INFLUENCING LEAD AND COPPER CONTAMINATION IN DRINKING WATER: APPROACH FOR A CASE STUDY IN ANALYTICAL CHEMISTRY. Lead and copper concentrations in drinking water increase considerably on going from municipality reservoirs to the households sampled in Ribeirao Preto (SP-Brazil). Flushing of only 3 liters of water reduced metal concentrations by more than 50%. Relatively small changes in water pH rapidly affected corrosion processes in lead pipes, while water hardness appeared to have a long-term effect. This approach aims to encourage University teachers to use its content as a case study in disciplines of Instrumental Analytical Chemistry and consequently increase knowledge about drinking water contamination in locations where no public monitoring of trace metals is in place.
Resumo:
Considering how demand for quality assurance (QA) has grown in analytical laboratories, we show the trends in analytical science, illustrated through international standard ISO/IEC 17025, validation, measurements of uncertainty, and quality-control (QC) measures. A detailed review of the history of analytical chemistry indicates that these concepts are consistently used in laboratories to demonstrate their traceabilities and competences to provide reliable results. We propose a new approach for laboratory QA, which also develops a diagram to support routine laboratories (which generally apply a quality system, such as ISO/IEC 17025) or research laboratories (that have some difficult applying this international standard). This approach, called the Analytical Quality Assurance Cycle (AQAC), presents the major QA concepts and the relationships between these concepts in order to provide traceability and reliable results. The AQAC is a practical tool to support the trend towards QA in analytical laboratories. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
This article describes a new design for a paper-based electrochemical system for flow injection analysis. Capillary wicking facilitates a gravity-driven flow of buffer solution continuously through paper and nitrocellulose, from a buffer reservoir at one end of the device to a sink at the other. A difference in height between the reservoir and the sink leads to a continuous and constant flow. The nitrocellulose lies horizontally on a working electrode, which consists of a thin platinum layer deposited on a solid support. The counter and reference electrodes are strategically positioned upstream in the buffer reservoir. A simple pipetting device was developed for reliable application of (sub)microliter volumes of sample without the need of commercial micropipets; this device did not damage the nitrocellulose membrane. Demonstration of the system for the determination of the concentration of glucose in urine resulted in a noninvasive, quantitative assay that could be used for diagnosis and monitoring of diabetes. This method does not require disposable test strips, with enzyme and electrodes, that are thrown away after each measurement Because of its low cost, this system could be used in medical environments that are resource-limited.