7 resultados para Foreign Affairs
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The podzol-ferralsol soil systems, which cover great areas of Amazonia and other equatorial regions, are frequently associated with kaolin deposits and store and export large amounts of carbon. Although natural organic matter (NOM) plays a key role in their dynamics, little is known about their biogeochemistry. In order to assess the specific role of dissolved organic matter (DOM) on NOM storage in deep horizons and to determine possible relationships between kaolin formation and DOM properties, we studied the groundwater composition of a typical podzol-ferralsol soil catena from the Alto Rio Negro region, Brazil. Groundwater was sampled using tension-free lysimeters placed according to soil morphology. DOC, E-H, p(H), and dissolved Si, Al3+, Fe2+, and Fe3+ were analyzed for all samples and values are given in a database. Quantification of other dissolved ions, small carboxylic acids and SUVA(254) index and acid-base microtitration was achieved on selected samples. Part of the DOM produced by the hydromorphic podzols is directly exported to the blackwater streams; another part percolates at greater depth, and more than 90% of it adsorbs in the Bh-Bhs horizons, allowing carbon storage at depth. Humic substances are preferentially adsorbed with regard to small carboxylic compounds. With regard to kaolin genesis, kaolinite precipitation is favored by Al release from NOM mineralization within the Bh-Bhs and kaolin bleaching is ensured by iron reduction due to acidity and relatively low E-H. Fe2+ mobility can be related to small E-H variations and enhanced by the significant concentration of small carboxylic acids. The long-term result of these processes is the thickening of the kaolin, and it can be inferred that kaolin is likely to occur where active, giant podzols are close to a slope gradient sufficient enough to lower the deep water table.
Resumo:
There is no consensus in the literature about the impact of complete denture wear on obstructive sleep apnea (OSA). The goal of this randomized clinical study was to assess if complete denture wear during sleep interferes with the quality of sleep. Elderly edentulous OSA patients from a complete denture clinic were enrolled and received new complete dentures. An objective sleep analysis was determined with polysomnography performed at the sleep laboratory for all patients who slept either with or without their dentures. Twenty-three patients (74% females) completed the study with a mean age of 69.6 years and a mean body mass index of 26.7 kg/m(2). The apnea and hypopnea index (AHI) was significantly higher when patients slept with dentures compared to without (25.9 +/- 14.8/h vs. 19.9 +/- 10.2/h; p > 0.005). In the mild OSA group, the AHI was significantly higher when patients slept with the dentures (16.6 +/- 6.9 vs. 8.9 +/- 2.4; p < 0.05), while in moderate to severe OSA patients, the AHI was not significantly different when sleeping with dentures (.30.8 +/- 15.6 vs. 25.7 +/- 7.5; p = 0.2). The supine AHI in mild patients was related to a higher increase in AHI while wearing dentures (12.7 +/- 8.4/h vs. 51.9 +/- 28.6/h; p < 0.001). A limitation of the study is that the mild OSA patients had a higher BMI when compared to the moderate to severe OSA patients. Ten out of 14 patients who preferred to sleep with their upper and lower dentures showed an increase in their AHI while wearing dentures to sleep. Contrary to previous studies, we found that OSA patients may experience more apneic events if they sleep with their dentures in place. Specifically, in mild OSAS patients, the use of dentures substantially increases the AHI especially when in the supine position.
Resumo:
Background: Infant mortality is an important measure of human development, related to the level of welfare of a society. In order to inform public policy, various studies have tried to identify the factors that influence, at an aggregated level, infant mortality. The objective of this paper is to analyze the regional pattern of infant mortality in Brazil, evaluating the effect of infrastructure, socio-economic, and demographic variables to understand its distribution across the country. Methods: Regressions including socio-economic and living conditions variables are conducted in a structure of panel data. More specifically, a spatial panel data model with fixed effects and a spatial error autocorrelation structure is used to help to solve spatial dependence problems. The use of a spatial modeling approach takes into account the potential presence of spillovers between neighboring spatial units. The spatial units considered are Minimum Comparable Areas, defined to provide a consistent definition across Census years. Data are drawn from the 1980, 1991 and 2000 Census of Brazil, and from data collected by the Ministry of Health (DATASUS). In order to identify the influence of health care infrastructure, variables related to the number of public and private hospitals are included. Results: The results indicate that the panel model with spatial effects provides the best fit to the data. The analysis confirms that the provision of health care infrastructure and social policy measures (e. g. improving education attainment) are linked to reduced rates of infant mortality. An original finding concerns the role of spatial effects in the analysis of IMR. Spillover effects associated with health infrastructure and water and sanitation facilities imply that there are regional benefits beyond the unit of analysis. Conclusions: A spatial modeling approach is important to produce reliable estimates in the analysis of panel IMR data. Substantively, this paper contributes to our understanding of the physical and social factors that influence IMR in the case of a developing country.
Resumo:
The leaf area index (LAI) is a key characteristic of forest ecosystems. Estimations of LAI from satellite images generally rely on spectral vegetation indices (SVIs) or radiative transfer model (RTM) inversions. We have developed a new and precise method suitable for practical application, consisting of building a species-specific SVI that is best-suited to both sensor and vegetation characteristics. Such an SVI requires calibration on a large number of representative vegetation conditions. We developed a two-step approach: (1) estimation of LAI on a subset of satellite data through RTM inversion; and (2) the calibration of a vegetation index on these estimated LAI. We applied this methodology to Eucalyptus plantations which have highly variable LAI in time and space. Previous results showed that an RTM inversion of Moderate Resolution Imaging Spectroradiometer (MODIS) near-infrared and red reflectance allowed good retrieval performance (R-2 = 0.80, RMSE = 0.41), but was computationally difficult. Here, the RTM results were used to calibrate a dedicated vegetation index (called "EucVI") which gave similar LAI retrieval results but in a simpler way. The R-2 of the regression between measured and EucVI-simulated LAI values on a validation dataset was 0.68, and the RMSE was 0.49. The additional use of stand age and day of year in the SVI equation slightly increased the performance of the index (R-2 = 0.77 and RMSE = 0.41). This simple index opens the way to an easily applicable retrieval of Eucalyptus LAI from MODIS data, which could be used in an operational way.
Resumo:
This work examines the effect of copper nanoparticles (Cu NPs) on the photocurrent efficiency of silicon photovoltaic (Si PV) devices. An optimized synthesis of stable Cu NPs is reported together with a procedure for their immobilization on the Si PV surface. A comprehensive analysis of the photocurrent and power dependence of the Cu NPs surface coverage and size is presented. A decrease in photoconversion was observed for wavelengths shorter than similar to 500 nm, due to the Cu interband absorption. In the low surface coverage limit, where the level of aggregation was found to be low, the surface plasmon resonance absorption dominates leading to a modest effect on the photocurrent response. As the number of aggregates increased with the surface coverage, the photocurrent efficiency also increased, and a maximum enhancement power conversion of 16% was found for a 54 +/- 6 NPs per mu m(2) PV cell. This enhancement was attributed to SPR light scattering and trapping into the Si PV device. Higher surface coverage yielded numerous aggregates which acted as a bulk coating and caused a decrease in both photocurrent and power measurements.
Resumo:
Heterogeneity in the transmission rates of pathogens across hosts or environments may produce disease hotspots, which are defined as specific sites, times or species associations in which the infection rate is consistently elevated. Hotspots for avian influenza virus (AIV) in wild birds are largely unstudied and poorly understood. A striking feature is the existence of a unique but consistent AIV hotspot in shorebirds (Charadriiformes) associated with a single species at a specific location and time (ruddy turnstone Arenaria interpres at Delaware Bay, USA, in May). This unique case, though a valuable reference, limits our capacity to explore and understand the general properties of AIV hotspots in shorebirds. Unfortunately, relatively few shorebirds have been sampled outside Delaware Bay and they belong to only a few shorebird families; there also has been a lack of consistent oropharyngeal sampling as a complement to cloacal sampling. In this study we looked for AIV hotspots associated with other shorebird species and/or with some of the larger congregation sites of shorebirds in the old world. We assembled and analysed a regionally extensive dataset of AIV prevalence from 69 shorebird species sampled in 25 countries across Africa and Western Eurasia. Despite this diverse and extensive coverage we did not detect any new shorebird AIV hotspots. Neither large shorebird congregation sites nor the ruddy turnstone were consistently associated with AIV hotspots. We did, however, find a low but widespread circulation of AIV in shorebirds that contrast with the absence of AIV previously reported in shorebirds in Europe. A very high AIV antibody prevalence coupled to a low infection rate was found in both first-year and adult birds of two migratory sandpiper species, suggesting the potential existence of an AIV hotspot along their migratory flyway that is yet to be discovered.
Resumo:
The anomalies in the anti-Stokes to Stokes intensity ratios in single-molecule surface-enhanced resonance Raman scattering were investigated. Brilliant green and crystal violet dyes were the molecular probes, and the experiments were carried out on an electrochemically activated Ag surface. The results allowed new insights into the origin of these anomalies and led to a new method to confirm the single-molecule regime in surface-enhanced Raman scattering. Moreover, a methodology to estimate the distribution of resonance energies that contributed to the imbalance in the anti-Stokes to Stokes intensity ratios at the electromagnetic hot spots was proposed. This method allowed the local plasmonic resonance energies on the metallic surface to be spatially mapped.