22 resultados para Forced recruitment
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Two growth patterns are recognized in shallow-water ophiuroids: (I) slow growth and early reproductive maturity over a long life span and (2) rapid growth with a short life span. For species with the first pattern, both growth and recruitment would reflect a reproductive pattern with long periods of resting and spawning concentrated in certain months of the year. To evaluate this hypothesis, the recruitment, population dynamics, and growth of the intertidal brittle star Ophionereis reticulata were analyzed from January 2001 to December 2002 at the Baleciro Isthmus on the southeast coast of Brazil. The species shows an annual gametogenic cycle with spawning taking place in summer. Densities varied from 0.46 to 9.46 individuals m(-2). Density variations and seawater temperature were not significantly correlated. The population structure of O. reticulata was polymodal, with at least four co-occurring cohorts. Recruitment events were recorded in March 2001, October 2001, January 2002, and September 2002. As indicated by the asymptote size (D(infinity)=11.47 mm +/- 1.46), growth constant (K=0.42 year(-1)+/- 0.12), and oscillation index (C=0.97 +/- 0.51), the growth pattern of O. reticulata seems to be based on high survivorship of juveniles and adults, where sexual maturity is reached at a small size with rapid growth in the first 2 years of life. A low level of settlement is to be expected based on these data; however, there must be a minimum successful survivorship and development for juveniles and adults. Another explanation for the lack of small individuals (disc diameter <1.0 mm) could be that recruitment is located in a different area and a post-settlement migration might be involved in the maintenance of the population.
Resumo:
Objective Deposition of monosodium urate monohydrate (MSU) crystals in the joints promotes an intense inflammatory response and joint dysfunction. This study evaluated the role of the NLRP3 inflammasome and 5-lipoxygenase (5-LOX)derived leukotriene B4 (LTB4) in driving tissue inflammation and hypernociception in a murine model of gout. Methods. Gout was induced by injecting MSU crystals into the joints of mice. Wild-type mice and mice deficient in NLRP3, ASC, caspase 1, interleukin-1 beta (IL-1 beta), IL-1 receptor type I (IL-1RI), IL-18R, myeloid differentiation factor 88 (MyD88), or 5-LOX were used. Evaluations were performed to assess neutrophil influx, LTB4 activity, cytokine (IL-1 beta, CXCL1) production (by enzyme-linked immunosorbent assay), synovial microvasculature cell adhesion (by intravital microscopy), and hypernociception. Cleaved caspase 1 and production of reactive oxygen species (ROS) were analyzed in macrophages by Western blotting and fluorometric assay, respectively. Results. Injection of MSU crystals into the knee joints of mice induced neutrophil influx and neutrophildependent hypernociception. MSU crystal-induced neutrophil influx was CXCR2-dependent and relied on the induction of CXCL1 in an NLRP3/ASC/caspase 1/IL-1 beta/MyD88-dependent manner. LTB4 was produced rapidly after injection of MSU crystals, and this was necessary for caspase 1-dependent IL-1 beta production and consequent release of CXCR2-acting chemokines in vivo. In vitro, macrophages produced LTB4 after MSU crystal injection, and LTB4 was relevant in the MSU crystalinduced maturation of IL-1 beta. Mechanistically, LTB4 drove MSU crystal-induced production of ROS and ROS-dependent activation of the NLRP3 inflammasome. Conclusion. These results reveal the role of the NLRP3 inflammasome in mediating MSU crystalinduced inflammation and dysfunction of the joints, and highlight a previously unrecognized role of LTB4 in driving NLRP3 inflammasome activation in response to MSU crystals, both in vitro and in vivo.
Resumo:
Life-history information constitutes the raw data for building population models used in species conservation. We provide life-history data for the endangered Santa Catalina Island Rattlesnake, Crotalus catalinensis. We use data from 277 observations of C. catalinensis made between 2002 and 2011 on the island. Mean snout-vent length (SVL) of adult C. catalinensis was 643 mm for males and 631 mm for females; the difference was not significant. The degree of sexual size dimorphism (SSD; using SVL) was -0.02. However, sexes were dimorphic in total length ( SVL + tail length), relative tail length, and stoutness. Juvenile recruitment occurs during late-summer. In their first year of life, juveniles seem to grow at a rate of about 1.7 cm/mo. Females seem to become mature around 570 mm SVL, probably in the year when they become 2 y old. Scattered literature data corroborates the time of juvenile recruitment described herein. Growth in C. catalinensis seems to be slower than that of C. ruber, its sister taxa, but similar to other rattlesnakes.
Resumo:
Background: Autoimmune polyendocrinopathy-candidiasis-ectodermal dystrophy (APECED) syndrome is a complex immunologic disease caused by mutation of the autoimmune regulator (AIRE) gene. Autoimmunity in patients with APECED syndrome has been shown to result from deficiency of AIRE function in transcriptional regulation of thymic peripheral tissue antigens, which leads to defective T-cell negative selection. Candidal susceptibility in patients with APECED syndrome is thought to result from aberrant adaptive immunity. Objective: To determine whether AIRE could function in anticandidal innate immune signaling, we investigated an extrathymic role for AIRE in the immune recognition of beta-glucan through the Dectin-1 pathway, which is required for defense against Candida species. Methods: Innate immune signaling through the Dectin-1 pathway was assessed in both PBMCs from patients with APECED syndrome and a monocytic cell line. Subcellular localization of AIRE was assessed by using confocal microscopy. Results: PBMCs from patients with APECED syndrome had reduced TNF-alpha responses after Dectin-1 ligation but in part used a Raf-1-mediated pathway to preserve function. In the THP-1 human monocytic cell line, reducing AIRE expression resulted in significantly decreased TNF-a release after Dectin-1 ligation. AIRE formed a transient complex with the known Dectin-1 pathway components phosphorylated spleen tyrosine kinase and caspase recruitment domain-containing protein 9 after receptor ligation and localized with Dectin-1 at the cell membrane. Conclusion: AIRE can participate in the Dectin-1 signaling pathway, indicating a novel extrathymic role for AIRE and a defect that likely contributes to fungal susceptibility in patients with APECED syndrome. (J Allergy Clin Immunol 2012;129:464-72.)
Resumo:
Alveolar macrophages (AMs) are important cells in the resolution of the inflammatory process and they come into direct contact with inhaled pollutants. Hydroquinone (HQ) is an environmental pollutant and a component of cigarette smoke that causes immunosuppressive effects. In the present work, we showed that mice exposed to low levels of aerosolized HQ (25 ppm; 1 h/day/5 days) presented impaired mononuclear cell migration to the lipopolysaccharide (LPS)-inflamed lung. This may have been due to reduced monocyte chemoattractant protein-1 (MCP-1) secretion into bronchoalveolar lavage fluid (BALF), and it was not related to alterations to mononuclear cell mobilization into the blood or adhesion molecules expression on mononuclear cell membranes. Corroborating the actions of HQ on MCP-1 secretion, reduced MCP-1 concentrations were also found in the supernatant of ex vivo AM and tracheal tissue collected from HQ-exposed mice. A direct action of HQ on MCP-1 secretion, resulting from impaired gene synthesis, was verified by in vitro incubation of naive AMs or tracheal tissue with HQ. The role of reduced levels of MCP-1 in the BALF on monocyte migration was analysed in the human monocytic lineage THP-1 in in vitro chemotaxis assays, which showed that the reduced concentrations of MCP-1 found in the BALF or cell supernatants from HQ-exposed mice impaired cell migration. Considering the fact that MCP-1 presents a broad spectrum of actions on pathophysiological conditions and that resident mononuclear cells are involved in lung tissue homeostasis and in immune host defence, the mechanism of HQ toxicity presented herein might be relevant to the genesis of infectious lung diseases in smokers and in inhabitants of polluted areas. (C) 2012 Elsevier Ireland Ltd. All rights reserved.
Resumo:
Endothelin mediates neutrophil recruitment during innate inflammation. Herein we address whether endothelin-1 (ET-1) is involved in neutrophil recruitment in adaptive inflammation in mice, and its mechanisms. Pharmacological treatments were used to determine the role of endothelin in neutrophil recruitment to the peritoneal cavity of mice challenged with antigen (ovalbumin) or ET-1. Levels of ET-1, tumour necrosis factor a (TNF alpha), and CXC chemokine ligand 1 (CXCL1) were determined by enzyme-linked immunosorbent assay. Neutrophil migration and flow cytometry analyses were performed 4 h after the intraperitoneal stimulus. ET-1 induced dose-dependent neutrophil recruitment to the peritoneal cavity. Treatment with the non-selective ETA/ETB receptor antagonist bosentan, and selective ETA or ETB receptor antagonists BQ-123 or BQ-788, respectively, inhibited ET-1- and ovalbumin-induced neutrophil migration to the peritoneal cavity. In agreement with the above, the antigen challenge significantly increased levels of ET-1 in peritoneal exudates. The ET-1- and ovalbumin-induced neutrophil recruitment were reduced in TNFR1 deficient mice, and by treatments targeting CXCL1 or CXC chemokine receptor 2 (CXCR2); further, treatment with bosentan, BQ-123, or BQ-788 inhibited ET-1- and antigen-induced production of TNFa and CXCL1. Furthermore, ET-1 and ovalbumin challenge induced an increase in the number of cells expressing the Gr1(+) markers in the granulocyte gate, CD11c+ markers in the monocyte gate, and CD4(+) and CD45(+) (B220) markers in the lymphocyte gate in an ETA-and ETB-dependent manner, as determined by flow cytometry analysis, suggesting that ET-1 might be involved in the recruitment of neutrophils and other cells in adaptive inflammation. Therefore, the present study demonstrates that ET-1 is an important mediator for neutrophil recruitment in adaptive inflammation via TNF alpha and CXCL1/CXCR2-dependent mechanism.
Resumo:
Background: In acute lung injury positive end-expiratory pressure (PEEP) and recruitment maneuver are proposed to optimize arterial oxygenation. The aim of the study was to evaluate the impact of such a strategy on lung histological inflammation and hyperinflation in pigs with acid aspiration-induced lung injury. Methods: Forty-seven pigs were randomly allocated in seven groups: (1) controls spontaneously breathing; (2) without lung injury, PEEP 5 cm H2O; (3) without lung injury, PEEP titration; (4) without lung injury, PEEP titration + recruitment maneuver; (5) with lung injury, PEEP 5 cm H2O; (6) with lung injury, PEEP titration; and (7) with lung injury, PEEP titration + recruitment maneuver. Acute lung injury was induced by intratracheal instillation of hydrochloric acid. PEEP titration was performed by incremental and decremental PEEP from 5 to 20 cm H2O for optimizing arterial oxygenation. Three recruitment maneuvers (pressure of 40 cm H2O maintained for 20 s) were applied to the assigned groups at each PEEP level. Proportion of lung inflammation, hemorrhage, edema, and alveolar wall disruption were recorded on each histological field. Mean alveolar area was measured in the aerated lung regions. Results: Acid aspiration increased mean alveolar area and produced alveolar wall disruption, lung edema, alveolar hemorrhage, and lung inflammation. PEEP titration significantly improved arterial oxygenation but simultaneously increased lung inflammation in juxta-diaphragmatic lung regions. Recruitment maneuver during PEEP titration did not induce additional increase in lung inflammation and alveolar hyperinflation. Conclusion: In a porcine model of acid aspiration-induced lung injury, PEEP titration aimed at optimizing arterial oxygenation, substantially increased lung inflammation. Recruitment maneuvers further improved arterial oxygenation without additional effects on inflammation and hyperinflation.
Resumo:
Background: Previous studies show that chronic hemiparetic patients after stroke, presents inabilities to perform movements in paretic hemibody. This inability is induced by positive reinforcement of unsuccessful attempts, a concept called learned non-use. Forced use therapy (FUT) and constraint induced movement therapy (CIMT) were developed with the goal of reversing the learned non-use. These approaches have been proposed for the rehabilitation of the paretic upper limb (PUL). It is unknown what would be the possible effects of these approaches in the rehabilitation of gait and balance. Objectives: To evaluate the effect of Modified FUT (mFUT) and Modified CIMT (mCIMT) on the gait and balance during four weeks of treatment and 3 months follow-up. Methods: This study included thirty-seven hemiparetic post-stroke subjects that were randomly allocated into two groups based on the treatment protocol. The non-paretic UL was immobilized for a period of 23 hours per day, five days a week. Participants were evaluated at Baseline, 1st, 2nd, 3rd and 4th weeks, and three months after randomization. For the evaluation we used: The Stroke Impact Scale (SIS), Berg Balance Scale (BBS) and Fugl-Meyer Motor Assessment (FM). Gait was analyzed by the 10-meter walk test (T10) and Timed Up & Go test (TUG). Results: Both groups revealed a better health status (SIS), better balance, better use of lower limb (BBS and FM) and greater speed in gait (T10 and TUG), during the weeks of treatment and months of follow-up, compared to the baseline. Conclusion: The results show mFUT and mCIMT are effective in the rehabilitation of balance and gait. Trial Registration ACTRN12611000411943.
Resumo:
We studied locomotor activity rhythms of C57/Bl6 mice under a chronic jet lag (CJL) protocol (ChrA(6/2)), which consisted of 6-hour phase advances of the light-dark schedule (LD) every 2 days. Through periodogram analysis, we found 2 components of the activity rhythm: a short-period component (21.01 +/- 0.04 h) that was entrained by the LD schedule and a long-period component (24.68 +/- 0.26 h). We developed a mathematical model comprising 2 coupled circadian oscillators that was tested experimentally with different CJL schedules. Our simulations suggested that under CJL, the system behaves as if it were under a zeitgeber with a period determined by (24 -[phase shift size/days between shifts]). Desynchronization within the system arises according to whether this effective zeitgeber is inside or outside the range of entrainment of the oscillators. In this sense, ChrA(6/2) is interpreted as a (24 - 6/2 = 21 h) zeitgeber, and simulations predicted the behavior of mice under other CJL schedules with an effective 21-hour zeitgeber. Animals studied under an asymmetric T = 21 h zeitgeber (carried out by a 3-hour shortening of every dark phase) showed 2 activity components as observed under ChrA(6/2): an entrained short-period (21.01 +/- 0.03 h) and a long-period component (23.93 +/- 0.31 h). Internal desynchronization was lost when mice were subjected to 9-hour advances every 3 days, a possibility also contemplated by the simulations. Simulations also predicted that desynchronization should be less prevalent under delaying than under advancing CJL. Indeed, most mice subjected to 6-hour delay shifts every 2 days (an effective 27-hour zeitgeber) displayed a single entrained activity component (26.92 +/- 0.11 h). Our results demonstrate that the disruption provoked by CJL schedules is not dependent on the phase-shift magnitude or the frequency of the shifts separately but on the combination of both, through its ratio and additionally on their absolute values. In this study, we present a novel model of forced desynchronization in mice under a specific CJL schedule; in addition, our model provides theoretical tools for the evaluation of circadian disruption under CJL conditions that are currently used in circadian research.
Resumo:
Nitric oxide (NO) is an atypical neurotransmitter that has been related to the pathophysiology of major depression disorder. Increased plasma NO levels have been reported in depressed and suicidal patients. Inhibition of neuronial nitric oxide synthase (nNOS), on the other hand, induces antidepressant effects in clinical and pre-clinical trials. The mechanisms responsible for the antidepressant-like effects of nNOS inhibitors, however, are not completely understood. In this study, genomic and proteomic analyses were used to investigate the effects of the preferential nNOS inhibitor 7-nitroindazole (7-NI) on changes in global gene and protein expression in the hippocampus of rats submitted to forced swimming test (FST). Chronic treatment (14 days, i.p.) with imipramine (15 mg/kg daily) or 7-NI (60 mg/kg daily) significantly reduced immobility in the FST. Saturation curves for Serial analysis of gene expression libraries showed that the hippocampus of animals submitted to FST presented a lower number of expressed genes compared to non-FST stressed groups. Imipramine, but not 7-NI, reverted this effect. GeneGo analyses revealed that genes related to oxidative phosphorylation, apoptosis and survival controlled by HTR1A signaling and cytoskeleton remodeling controlled by Rho GTPases were significantly changed by FST. 7-NI prevented this effect. In addition, 7-NI treatment changed the expression of genes related to transcription in the cAMP response element-binding pathway. Therefore, this study suggests that changes in oxidative stress and neuroplastic processes could be involved in the antidepressant-like effects induced by nNOS inhibition.
Resumo:
In a previous study, we reported that the short-term treatment with celecoxib, a nonsteroidal anti-inflammatory drug (NSAID) attenuates the activation of brain structures related to nociception and does not interfere with orthodontic incisor separation in rats. The conclusion was that celecoxib could possibly be prescribed for pain in orthodontic patients. However, we did not analyze the effects of this drug in periodontium. The aim of this follow-up study was to analyze effects of celecoxib treatment on recruitment and activation of osteoclasts and alveolar bone resorption after inserting an activated orthodontic appliance between the incisors in our rat model. Twenty rats (400420 g) were pretreated through oral gavage with celecoxib (50 mg/kg) or vehicle (carboxymethylcellulose 0.4%). After 30 min, they received an activated (30 g) orthodontic appliance, set not to cause any palate disjunction. In sham animals, the appliance was immediately removed after introduction. All animals received ground food and, every 12 h, celecoxib or vehicle. After 48 h, they were anesthetized and transcardiacally perfused through the aorta with 4% formaldehyde. Subsequently, maxillae were removed, post-fixed and processed for histomorphometry or immunohistochemical analyses. As expected, incisor distalization induced an inflammatory response with certain histological changes, including an increase in the number of active osteoclasts at the compression side in group treated with vehicle (appliance: 32.2 +/- 2.49 vs sham: 4.8 +/- 1.79, P<0.05) and celecoxib (appliance: 31.0 +/- 1.45 vs sham: 4.6 +/- 1.82, P<0.05). The treatment with celecoxib did not modify substantially the histological alterations and the number of active osteoclasts after activation of orthodontic appliance. Moreover, we did not see any difference between the groups with respect to percentage of bone resorption area. Taken together with our previous results we conclude that short-term treatment with celecoxib can indeed be a therapeutic alternative for pain relieve during orthodontic procedures.
Resumo:
Background: Mechanisms linking behavioral stress and inflammation are poorly understood, mainly in distal lung tissue. Objective: We have investigated whether the forced swim stress (FS) could modulate lung tissue mechanics, iNOS, cytokines, oxidative stress activation, eosinophilic recruitment, and remodeling in guinea pigs (GP) with chronic pulmonary inflammation. Methods: The GP were exposed to ovalbumin or saline aerosols (2x/wk/4wks, OVA, and SAL). Twenty-four hours after the 4th inhalation, the GP were submitted to the FS protocol (5x/wk/2wks, SAL-S, and OVA-S). Seventy-two hours after the 7th inhalation, lung strips were cut and tissue resistance (Rt) and elastance (Et) were obtained (at baseline and after OVA and Ach challenge). Strips were submitted to histopathological evaluation. Results: The adrenals' weight, the serum cortisol, and the catecholamines were measured. There was an increase in IL-2, IL-5, IL-13, IFN-gamma, iNOS, 8-iso-PGF2 alpha, and in %Rt and %Et after Ach challenge in the SAL-S group compared to the SAL one. The OVA-S group has had an increase in %Rt and %Et after the OVA challenge, in %Et after the Ach and in IL-4, 8-iso-PGF2 alpha, and actin compared to the OVA. Adrenal weight and cortisol serum were increased in stressed animals compared to nonstressed ones, and the catecholamines were unaltered. Conclusion & clinical relevance: Repeated stress has increased distal lung constriction, which was associated with an increase of actin, IL-4, and 8-iso-PGF2 alpha levels. Stress has also induced an activation of iNOS, cytokines, and oxidative stress pathways.
Resumo:
We evaluate the immunomodulation of Peroxisome proliferator-activated receptor-gamma (PPAR-gamma) agonists 15d-PGJ(2) and rosiglitazone (RGZ) in a model of chronic eosinophilia. 15d-PGJ(2) and RGZ significantly reduce eosinophil migration into the peritoneal cavity and down-regulate the eosinopoiesis. The synthesis of IL-5 was decreased after the treatment with 15d-PGJ(2) and RGZ corroborating with the eosinophil migration inhibition. However, IgE was decreased only after the administration of 15d-PGJ(2) in part due to B-cell inhibition. We also observed a decrease in the synthesis of IL-33, IL-17 and IL-23, suggesting that besides the modulation of Th2 pattern, there is a modulation via IL-23 and IL-17 suggesting a role of these cytokines in the eosinophil recruitment. In fact IL-17(-1-) mice failed to develop an eosinophilic response. Altogether, the results showed that PPAR-gamma agonists mainly 15d-PGJ(2), have therapeutic efficacy in eosinophil-induced diseases with an alternative mechanism of control, via IL-23/IL-17 and IL-33. (C) 2011 Elsevier Inc. All rights reserved.
Resumo:
Human endothelial cells (ECs) have the ability to make up the lining of blood vessels. These cells are also capable of neovascularization and revascularization and have been applied in various clinical situations. With the aim of understanding the effect of NANOG superexpression on ECs, we transduced the Nanog gene into the ECs. Nanog is highly expressed in embryonic stem cells (ESCs) and is essential for pluripotency and self-renewal. However, Nanog can also be expressed in somatic stem cells, and this gene is related to great expansion capacity in vitro. We found that ECs expressing Nanog showed expression of other stemness genes, such as Sox2, FoxD3, Oct4, Klf4, c-myc, and beta-catenin, that are not normally expressed or are expressed at very low levels in ECs. Nanog is one of the stemness genes that can activate other stemness genes, and the upregulation of the Nanog gene seems to be critical for reprogramming cells. In this study, the introduction of Nanog was sufficient to alter the expression of key genes of the pluripotent pathway. The functional importance of Nanog for altering the cell expression profile and morphology was clearly demonstrated by our results.
Resumo:
Background: Acute respiratory distress syndrome (ARDS) is associated with high in-hospital mortality. Alveolar recruitment followed by ventilation at optimal titrated PEEP may reduce ventilator-induced lung injury and improve oxygenation in patients with ARDS, but the effects on mortality and other clinical outcomes remain unknown. This article reports the rationale, study design, and analysis plan of the Alveolar Recruitment for ARDS Trial (ART). Methods/Design: ART is a pragmatic, multicenter, randomized (concealed), controlled trial, which aims to determine if maximum stepwise alveolar recruitment associated with PEEP titration is able to increase 28-day survival in patients with ARDS compared to conventional treatment (ARDSNet strategy). We will enroll adult patients with ARDS of less than 72 h duration. The intervention group will receive an alveolar recruitment maneuver, with stepwise increases of PEEP achieving 45 cmH(2)O and peak pressure of 60 cmH2O, followed by ventilation with optimal PEEP titrated according to the static compliance of the respiratory system. In the control group, mechanical ventilation will follow a conventional protocol (ARDSNet). In both groups, we will use controlled volume mode with low tidal volumes (4 to 6 mL/kg of predicted body weight) and targeting plateau pressure <= 30 cmH2O. The primary outcome is 28-day survival, and the secondary outcomes are: length of ICU stay; length of hospital stay; pneumothorax requiring chest tube during first 7 days; barotrauma during first 7 days; mechanical ventilation-free days from days 1 to 28; ICU, in-hospital, and 6-month survival. ART is an event-guided trial planned to last until 520 events (deaths within 28 days) are observed. These events allow detection of a hazard ratio of 0.75, with 90% power and two-tailed type I error of 5%. All analysis will follow the intention-to-treat principle. Discussion: If the ART strategy with maximum recruitment and PEEP titration improves 28-day survival, this will represent a notable advance to the care of ARDS patients. Conversely, if the ART strategy is similar or inferior to the current evidence-based strategy (ARDSNet), this should also change current practice as many institutions routinely employ recruitment maneuvers and set PEEP levels according to some titration method.