14 resultados para Force-based finite elements
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Hermite interpolation is increasingly showing to be a powerful numerical solution tool, as applied to different kinds of second order boundary value problems. In this work we present two Hermite finite element methods to solve viscous incompressible flows problems, in both two- and three-dimension space. In the two-dimensional case we use the Zienkiewicz triangle to represent the velocity field, and in the three-dimensional case an extension of this element to tetrahedra, still called a Zienkiewicz element. Taking as a model the Stokes system, the pressure is approximated with continuous functions, either piecewise linear or piecewise quadratic, according to the version of the Zienkiewicz element in use, that is, with either incomplete or complete cubics. The methods employ both the standard Galerkin or the Petrov–Galerkin formulation first proposed in Hughes et al. (1986) [18], based on the addition of a balance of force term. A priori error analyses point to optimal convergence rates for the PG approach, and for the Galerkin formulation too, at least in some particular cases. From the point of view of both accuracy and the global number of degrees of freedom, the new methods are shown to have a favorable cost-benefit ratio, as compared to velocity Lagrange finite elements of the same order, especially if the Galerkin approach is employed.
Resumo:
The purpose of this study is to present a position based tetrahedral finite element method of any order to accurately predict the mechanical behavior of solids constituted by functionally graded elastic materials and subjected to large displacements. The application of high-order elements makes it possible to overcome the volumetric and shear locking that appears in usual homogeneous isotropic situations or even in non-homogeneous cases developing small or large displacements. The use of parallel processing to improve the computational efficiency, allows employing high-order elements instead of low-order ones with reduced integration techniques or strain enhancements. The Green-Lagrange strain is adopted and the constitutive relation is the functionally graded Saint Venant-Kirchhoff law. The equilibrium is achieved by the minimum total potential energy principle. Examples of large displacement problems are presented and results confirm the locking free behavior of high-order elements for non-homogeneous materials. (C) 2011 Elsevier B.V. All rights reserved.
Resumo:
The generalized finite element method (GFEM) is applied to a nonconventional hybrid-mixed stress formulation (HMSF) for plane analysis. In the HMSF, three approximation fields are involved: stresses and displacements in the domain and displacement fields on the static boundary. The GFEM-HMSF shape functions are then generated by the product of a partition of unity associated to each field and the polynomials enrichment functions. In principle, the enrichment can be conducted independently over each of the HMSF approximation fields. However, stability and convergence features of the resulting numerical method can be affected mainly by spurious modes generated when enrichment is arbitrarily applied to the displacement fields. With the aim to efficiently explore the enrichment possibilities, an extension to GFEM-HMSF of the conventional Zienkiewicz-Patch-Test is proposed as a necessary condition to ensure numerical stability. Finally, once the extended Patch-Test is satisfied, some numerical analyses focusing on the selective enrichment over distorted meshes formed by bilinear quadrilateral finite elements are presented, thus showing the performance of the GFEM-HMSF combination.
Resumo:
The stability of two recently developed pressure spaces has been assessed numerically: The space proposed by Ausas et al. [R.F. Ausas, F.S. Sousa, G.C. Buscaglia, An improved finite element space for discontinuous pressures, Comput. Methods Appl. Mech. Engrg. 199 (2010) 1019-1031], which is capable of representing discontinuous pressures, and the space proposed by Coppola-Owen and Codina [A.H. Coppola-Owen, R. Codina, Improving Eulerian two-phase flow finite element approximation with discontinuous gradient pressure shape functions, Int. J. Numer. Methods Fluids, 49 (2005) 1287-1304], which can represent discontinuities in pressure gradients. We assess the stability of these spaces by numerically computing the inf-sup constants of several meshes. The inf-sup constant results as the solution of a generalized eigenvalue problems. Both spaces are in this way confirmed to be stable in their original form. An application of the same numerical assessment tool to the stabilized equal-order P-1/P-1 formulation is then reported. An interesting finding is that the stabilization coefficient can be safely set to zero in an arbitrary band of elements without compromising the formulation's stability. An analogous result is also reported for the mini-element P-1(+)/P-1 when the velocity bubbles are removed in an arbitrary band of elements. (C) 2012 Elsevier B.V. All rights reserved.
Resumo:
Visual analysis of social networks is usually based on graph drawing algorithms and tools. However, social networks are a special kind of graph in the sense that interpretation of displayed relationships is heavily dependent on context. Context, in its turn, is given by attributes associated with graph elements, such as individual nodes, edges, and groups of edges, as well as by the nature of the connections between individuals. In most systems, attributes of individuals and communities are not taken into consideration during graph layout, except to derive weights for force-based placement strategies. This paper proposes a set of novel tools for displaying and exploring social networks based on attribute and connectivity mappings. These properties are employed to layout nodes on the plane via multidimensional projection techniques. For the attribute mapping, we show that node proximity in the layout corresponds to similarity in attribute, leading to easiness in locating similar groups of nodes. The projection based on connectivity yields an initial placement that forgoes force-based or graph analysis algorithm, reaching a meaningful layout in one pass. When a force algorithm is then applied to this initial mapping, the final layout presents better properties than conventional force-based approaches. Numerical evaluations show a number of advantages of pre-mapping points via projections. User evaluation demonstrates that these tools promote ease of manipulation as well as fast identification of concepts and associations which cannot be easily expressed by conventional graph visualization alone. In order to allow better space usage for complex networks, a graph mapping on the surface of a sphere is also implemented.
Resumo:
This study deals with the reduction of the stiffness in precast concrete structural elements of multi-storey buildings to analyze global stability. Having reviewed the technical literature, this paper present indications of stiffness reduction in different codes, standards, and recommendations and compare these to the values found in the present study. The structural model analyzed in this study was constructed with finite elements using ANSYS® software. Physical Non-Linearity (PNL) was considered in relation to the diagrams M x N x 1/r, and Geometric Non-Linearity (GNL) was calculated following the Newton-Raphson method. Using a typical precast concrete structure with multiple floors and a semi-rigid beam-to-column connection, expressions for a stiffness reduction coefficient are presented. The main conclusions of the study are as follows: the reduction coefficients obtained from the diagram M x N x 1/r differ from standards that use a simplified consideration of PNL; the stiffness reduction coefficient for columns in the arrangements analyzed were approximately 0.5 to 0.6; and the variation of values found for stiffness reduction coefficient in concrete beams, which were subjected to the effects of creep with linear coefficients from 0 to 3, ranged from 0.45 to 0.2 for positive bending moments and 0.3 to 0.2 for negative bending moments.
Resumo:
In this work, an experimental and numerical analysis and characterization of functionally graded structures (FGSs) is developed. Nickel (Ni) and copper (Cu) materials are used as basic materials in the numerical modeling and experimental characterization. For modeling, a MATLAB finite element code is developed, which allows simulation of harmonic and modal analysis considering the graded finite element formulation. For experimental characterization, Ni-Cu FGSs are manufactured by using spark plasma sintering technique. Hardness and Young's modulus are found by using microindentation and ultrasonic measurements, respectively. The effective gradation of Ni/Cu FGS is addressed by means of optical microscopy, energy dispersive spectrometry, scanning electron microscopy and hardness testing. For the purpose of comparing modeling and experimental results, the hardness curve, along the gradation direction, is used for identifying the gradation profile; accordingly, the experimental hardness curve is used for approximating the Young's modulus variation and the graded finite element modeling is used for verification. For the first two resonance frequency values, a difference smaller than 1% between simulated and experimental results is obtained. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
The optoelectronic properties of InAs/GaAs quantum dots can be tuned by rapid thermal annealing. In this study, the morphology change of InAs/GaAs quantum dots layers induced by rapid thermal annealing was investigated at the atomic-scale by cross-sectional scanning tunneling microscopy. Finite elements calculations that model the outward relaxation of the cleaved surface were used to determine the indium composition profile of the wetting layer and the quantum dots prior and post rapid thermal annealing. The results show that the wetting layer is broadened upon annealing. This broadening could be modeled by assuming a random walk of indium atoms. Furthermore, we show that the stronger strain gradient at the location of the quantum dots enhances the intermixing. Photoluminescence measurements show a blueshift and narrowing of the photoluminescence peak. Temperature dependent photoluminescence measurements show a lower activation energy for the annealed sample. These results are in agreement with the observed change in morphology. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4770371]
Resumo:
Reinforced concrete beam elements are submitted to applicable loads along their life cycle that cause shear and torsion. These elements may be subject to only shear, pure torsion or both, torsion and shear combined. The Brazilian Standard Code ABNT NBR 6118:2007 [1] fixes conditions to calculate the transverse reinforcement area in beam reinforced concrete elements, using two design models, based on the strut and tie analogy model, first studied by Mörsch [2]. The strut angle θ (theta) can be considered constant and equal to 45º (Model I), or varying between 30º and 45º (Model II). In the case of transversal ties (stirrups), the variation of angle α (alpha) is between 45º and 90º. When the equilibrium torsion is required, a resistant model based on space truss with hollow section is considered. The space truss admits an inclination angle θ between 30º and 45º, in accordance with beam elements subjected to shear. This paper presents a theoretical study of models I and II for combined shear and torsion, in which ranges the geometry and intensity of action in reinforced concrete beams, aimed to verify the consumption of transverse reinforcement in accordance with the calculation model adopted As the strut angle on model II ranges from 30º to 45º, transverse reinforcement area (Asw) decreases, and total reinforcement area, which includes longitudinal torsion reinforcement (Asℓ), increases. It appears that, when considering model II with strut angle above 40º, under shear only, transverse reinforcement area increases 22% compared to values obtained using model I.
Resumo:
Piezoresistive sensors are commonly made of a piezoresistive membrane attached to a flexible substrate, a plate. They have been widely studied and used in several applications. It has been found that the size, position and geometry of the piezoresistive membrane may affect the performance of the sensors. Based on this remark, in this work, a topology optimization methodology for the design of piezoresistive plate-based sensors, for which both the piezoresistive membrane and the flexible substrate disposition can be optimized, is evaluated. Perfect coupling conditions between the substrate and the membrane based on the `layerwise' theory for laminated plates, and a material model for the piezoresistive membrane based on the solid isotropic material with penalization model, are employed. The design goal is to obtain the configuration of material that maximizes the sensor sensitivity to external loading, as well as the stiffness of the sensor to particular loads, which depend on the case (application) studied. The proposed approach is evaluated by studying two distinct examples: the optimization of an atomic force microscope probe and a pressure sensor. The results suggest that the performance of the sensors can be improved by using the proposed approach.
Resumo:
Statement of problem. The retention of an Aramany Class IV removable partial dental prosthesis can be compromised by a lack of support. The biomechanics of this obturator prosthesis result in an unusual stress distribution on the residual maxillary bone. Purpose. This study evaluated the biomechanics of an Aramany Class IV obturator prosthesis with finite element analysis and a digital 3-dimensional (3-D) model developed from a computed tomography scan; bone stress was evaluated according to the load placed on the prosthesis. Material and methods. A 3-D model of an Aramany Class IV maxillary resection and prosthesis was constructed. This model was used to develop a finite element mesh. A 120 N load was applied to the occlusal and incisal platforms corresponding to the prosthetic teeth. Qualitative analysis was based on the scale of maximum principal stress; values obtained through quantitative analysis were expressed in MPa. Results. Under posterior load, tensile and compressive stresses were observed; the tensile stress was greater than the compressive stress, regardless of the bone region, and the greatest compressive stress was observed on the anterior palate near the midline. Under an anterior load, tensile stress was observed in all of the evaluated bone regions; the tensile stress was greater than the compressive stress, regardless of the bone region. Conclusions. The Aramany Class IV obturator prosthesis tended to rotate toward the surgical resection when subjected to posterior or anterior loads. The amount of tensile and compressive stress caused by the Aramany Class IV obturator prosthesis did not exceed the physiological limits of the maxillary bone tissue. (J Prosthet Dent 2012;107:336-342)
Resumo:
Sensor and actuator based on laminated piezocomposite shells have shown increasing demand in the field of smart structures. The distribution of piezoelectric material within material layers affects the performance of these structures; therefore, its amount, shape, size, placement, and polarization should be simultaneously considered in an optimization problem. In addition, previous works suggest the concept of laminated piezocomposite structure that includes fiber-reinforced composite layer can increase the performance of these piezoelectric transducers; however, the design optimization of these devices has not been fully explored yet. Thus, this work aims the development of a methodology using topology optimization techniques for static design of laminated piezocomposite shell structures by considering the optimization of piezoelectric material and polarization distributions together with the optimization of the fiber angle of the composite orthotropic layers, which is free to assume different values along the same composite layer. The finite element model is based on the laminated piezoelectric shell theory, using the degenerate three-dimensional solid approach and first-order shell theory kinematics that accounts for the transverse shear deformation and rotary inertia effects. The topology optimization formulation is implemented by combining the piezoelectric material with penalization and polarization model and the discrete material optimization, where the design variables describe the amount of piezoelectric material and polarization sign at each finite element, with the fiber angles, respectively. Three different objective functions are formulated for the design of actuators, sensors, and energy harvesters. Results of laminated piezocomposite shell transducers are presented to illustrate the method. Copyright (C) 2012 John Wiley & Sons, Ltd.
Resumo:
This work addresses the treatment of lower density regions of structures undergoing large deformations during the design process by the topology optimization method (TOM) based on the finite element method. During the design process the nonlinear elastic behavior of the structure is based on exact kinematics. The material model applied in the TOM is based on the solid isotropic microstructure with penalization approach. No void elements are deleted and all internal forces of the nodes surrounding the void elements are considered during the nonlinear equilibrium solution. The distribution of design variables is solved through the method of moving asymptotes, in which the sensitivity of the objective function is obtained directly. In addition, a continuation function and a nonlinear projection function are invoked to obtain a checkerboard free and mesh independent design. 2D examples with both plane strain and plane stress conditions hypothesis are presented and compared. The problem of instability is overcome by adopting a polyconvex constitutive model in conjunction with a suggested relaxation function to stabilize the excessive distorted elements. The exact tangent stiffness matrix is used. The optimal topology results are compared to the results obtained by using the classical Saint Venant–Kirchhoff constitutive law, and strong differences are found.
Resumo:
The importance of mechanical aspects related to cell activity and its environment is becoming more evident due to their influence in stem cell differentiation and in the development of diseases such as atherosclerosis. The mechanical tension homeostasis is related to normal tissue behavior and its lack may be related to the formation of cancer, which shows a higher mechanical tension. Due to the complexity of cellular activity, the application of simplified models may elucidate which factors are really essential and which have a marginal effect. The development of a systematic method to reconstruct the elements involved in the perception of mechanical aspects by the cell may accelerate substantially the validation of these models. This work proposes the development of a routine capable of reconstructing the topology of focal adhesions and the actomyosin portion of the cytoskeleton from the displacement field generated by the cell on a flexible substrate. Another way to think of this problem is to develop an algorithm to reconstruct the forces applied by the cell from the measurements of the substrate displacement, which would be characterized as an inverse problem. For these kind of problems, the Topology Optimization Method (TOM) is suitable to find a solution. TOM is consisted of an iterative application of an optimization method and an analysis method to obtain an optimal distribution of material in a fixed domain. One way to experimentally obtain the substrate displacement is through Traction Force Microscopy (TFM), which also provides the forces applied by the cell. Along with systematically generating the distributions of focal adhesion and actin-myosin for the validation of simplified models, the algorithm also represents a complementary and more phenomenological approach to TFM. As a first approximation, actin fibers and flexible substrate are represented through two-dimensional linear Finite Element Method. Actin contraction is modeled as an initial stress of the FEM elements. Focal adhesions connecting actin and substrate are represented by springs. The algorithm was applied to data obtained from experiments regarding cytoskeletal prestress and micropatterning, comparing the numerical results to the experimental ones