3 resultados para Followup study
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objective To assess several baseline risk factors that may predict patellofemoral and tibiofemoral cartilage loss during a 6-month period. Methods For 177 subjects with chronic knee pain, 3T magnetic resonance imaging (MRI) of both knees was performed at baseline and followup. Knees were semiquantitatively assessed, evaluating cartilage morphology, subchondral bone marrow lesions, meniscal morphology/extrusion, synovitis, and effusion. Age, sex, and body mass index (BMI), bone marrow lesions, meniscal damage/extrusion, synovitis, effusion, and prevalent cartilage damage in the same subregion were evaluated as possible risk factors for cartilage loss. Logistic regression models were applied to predict cartilage loss. Models were adjusted for age, sex, treatment, and BMI. Results Seventy-nine subregions (1.6%) showed incident or worsening cartilage damage at followup. None of the demographic risk factors was predictive of future cartilage loss. Predictors of patellofemoral cartilage loss were effusion, with an adjusted odds ratio (OR) of 3.5 (95% confidence interval [95% CI] 1.39.4), and prevalent cartilage damage in the same subregion with an adjusted OR of 4.3 (95% CI 1.314.1). Risk factors for tibiofemoral cartilage loss were baseline meniscal extrusion (adjusted OR 3.6 [95% CI 1.310.1]), prevalent bone marrow lesions (adjusted OR 4.7 [95% CI 1.119.5]), and prevalent cartilage damage (adjusted OR 15.3 [95% CI 4.947.4]). Conclusion Cartilage loss over 6 months is rare, but may be detected semiquantitatively by 3T MRI and is most commonly observed in knees with Kellgren/Lawrence grade 3. Predictors of patellofemoral cartilage loss were effusion and prevalent cartilage damage in the same subregion. Predictors of tibiofemoral cartilage loss were prevalent cartilage damage, bone marrow lesions, and meniscal extrusion.
Resumo:
Background. The link between endogenous estrogen, coronary artery disease (CAD), and death in postmenopausal women is uncertain. We analyzed the association between death and blood levels of estrone in postmenopausal women with known coronary artery disease (CAD) or with a high-risk factor score for CAD. Methods. 251 postmenopausal women age 50-90 years not on estrogen therapy. Fasting blood for estrone and heart disease risk factors were collected at baseline. Women were grouped according to their estrone levels (<15 and >= 15 pg/mL). Fatal events were recorded after 5.8 perpendicular to 1.4 years of followup. Results. The Kaplan-Meier survival curve showed a significant trend (P = 0.039) of greater all-cause mortality in women with low estrone levels (< 15 pg/mL). Cox multivariate regression analysis model adjusted for body mass index, diabetes, dyslipidemia, family history, and estrone showed estrone (OR = 0.45; P = 0.038) as the only independent variable for all-cause mortality. Multivariate regression model adjusted for age, body mass index, hypertension, diabetes, dyslipidemia, family history, and estrone showed that only age (OR = 1.06; P = 0.017) was an independent predictor of all-cause mortality. Conclusions. Postmenopausal women with known CAD or with a high-risk factor score for CAD and low estrone levels (< 15 pg/mL) had increased all-cause mortality.
Resumo:
Purpose. To assess the efficacy and safety of intraprostatic injection of two botulinum neurotoxin type A (BoNT-A) doses for the treatment of benign prostatic hyperplasia (BPH). Materials and Methods. Men with symptomatic BPH who failed medical treatment were randomized to receive 100 U or 200 U of BoNT-A into the prostate. The International Prostatic Symptom Score (IPSS), maximum flow rate (Q(max)), post-void residual volume (PVR), PSA levels and prostate volume before injection and after 3 and 6 months were evaluated. Adverse events were compared between the groups. Results. Thirty four patients were evaluated, including 17 in the BoNT-A 100 U group and 17 in the BoNT-A 200 U group. Baseline characteristics were similar in both groups. Both doses produced significant improvements in IPSS, Q(max) and PVR after 3 and 6 months and both doses promoted comparable effects. Prostate volume was affected by 200 U BoNT-A injection only after 6 months of treatment. PSA levels were significantly affected in the 100 U group only after 6 months of treatment. In the 200 U group, PSA levels were significantly decreased after 3 and 6 months. The complication rate was similar in both groups. Conclusions. Efficacy and safety of both BoNT-A doses are similar for BPH treatment in the short term followup.