3 resultados para Fokker-Planck, Equação de

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

80.00% 80.00%

Publicador:

Resumo:

Fluctuation-dissipation theorems can be used to predict characteristics of noise from characteristics of the macroscopic response of a system. In the case of gene networks, feedback control determines the "network rigidity," defined as resistance to slow external changes. We propose an effective Fokker-Planck equation that relates gene expression noise to topology and to time scales of the gene network. We distinguish between two situations referred to as normal and inverted time hierarchies. The noise can be buffered by network feedback in the first situation, whereas it can be topology independent in the latter.

Relevância:

80.00% 80.00%

Publicador:

Resumo:

The elephant walk model originally proposed by Schutz and Trimper to investigate non-Markovian processes led to the investigation of a series of other random-walk models. Of these, the best known is the Alzheimer walk model, because it was the first model shown to have amnestically induced persistence-i.e. superdiffusion caused by loss of memory. Here we study the robustness of the Alzheimer walk by adding a memoryless stochastic perturbation. Surprisingly, the solution of the perturbed model can be formally reduced to the solutions of the unperturbed model. Specifically, we give an exact solution of the perturbed model by finding a surjective mapping to the unperturbed model. Copyright (C) EPLA, 2012

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Simulamos a separação dos componentes de uma mistura bifásica com a equação de Cahn-Hilliard. Esta equação contém intrincados termos não lineares e derivadas de alta ordem. Além disso, a delgada região de transição entre os componentes da mistura requer muita resolução. Assim, determinar a solução numérica da equação de Cahn-Hilliard não é uma tarefa fácil, principalmente em três dimensões. Conseguimos a resolução exigida no tempo usando uma discretização semi-implícita de segunda ordem. No espaço, obtemos a precisão requerida utilizando malhas refinadas localmente com a estratégia AMR. Essas malhas se adaptam dinamicamente para recobrir a região de transição. O sistema linear proveniente da discretização é solucionado por intermédio de técnicas multinível-multigrid.