11 resultados para Fluid-dynamic analysis
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
This work evaluates the spatial distribution of normalised rates of droplet breakage and droplet coalescence in liquidliquid dispersions maintained in agitated tanks at operation conditions normally used to perform suspension polymerisation reactions. Particularly, simulations are performed with multiphase computational fluid dynamics (CFD) models to represent the flow field in liquidliquid styrene suspension polymerisation reactors for the first time. CFD tools are used first to compute the spatial distribution of the turbulent energy dissipation rates (e) inside the reaction vessel; afterwards, normalised rates of droplet breakage and particle coalescence are computed as functions of e. Surprisingly, multiphase simulations showed that the rates of energy dissipation can be very high near the free vortex surfaces, which has been completely neglected in previous works. The obtained results indicate the existence of extremely large energy dissipation gradients inside the vessel, so that particle breakage occurs primarily in very small regions that surround the impeller and the free vortex surface, while particle coalescence takes place in the liquid bulk. As a consequence, particle breakage should be regarded as an independent source term or a boundary phenomenon. Based on the obtained results, it can be very difficult to justify the use of isotropic assumptions to formulate particle population balances in similar systems, even when multiple compartment models are used to describe the fluid dynamic behaviour of the agitated vessel. (C) 2011 Canadian Society for Chemical Engineering
Resumo:
This study aimed to investigate the effects of pectinase enzyme treatment of acai pulp on cross-flow microfiltration (CFMF) performance and on phytochemical and functional characteristics of their compounds. Analyses of fouling mechanisms were carried out through resistance in series and blocking in law models. The enzymatic treatment was conducted using Ultrazym(R) AFPL (Novozymes A/S) at 500 mg kg(-1) of acai pulp for 30 min at 35 degrees C. Before microfiltrations, untreated and enzyme-treated acai pulps were previously diluted in distilled water (1:3; w/v). CFMFs were conducted using commercial alpha-alumina (alpha-Al2O3) ceramic membranes (Andritz AG, Austria) of 0.2 mu m and 0.8 mu m pore sizes, and 0.0047 m(2) of filtration area. The microfiltration unit was operated in batch mode for 120 min at 25 degrees C and the fluid-dynamic conditions were transmembrane pressure of Delta P = 100 kPa and cross-flow velocity of 3 m s(-1) in turbulent flow. The highest values of permeate flux and accumulated permeate volume were obtained using enzyme-treated pulp and 0.2 mu m pore size membranes with steady flux values exceeding 100 L h(-1) m(-2). For the 0.8 mu m pore size membrane, the estimated total resistance after the microfiltration of enzyme-treated acai pulp was 21% lower than the untreated pulp, and for the 0.2 mu m pore size membrane, it was 18%. Cake filtration was the dominant mechanism in the early stages of most of the CFMF processes. After approximately 20 min, however, intermediate pore blocking and complete pore blocking contributed to the overall fouling mechanisms. The reduction of the antioxidant capacity of the permeates obtained after microfiltration of the enzyme-treated pulp was higher (p < 0.01) than that obtained using untreated pulp. For total polyphenols, on the contrary, the permeates obtained after microfiltration of the enzyme-treated pulp showed a lower mean reduction (p < 0.01) than those from the untreated pulp. The results show that the enzymatic treatment had a positive effect on the CFMF process of acai pulp. (C) 2012 Elsevier Ltd. All rights reserved.
Resumo:
In the optimization or parametric analyses of risers, several configurations must be analyzed. It is laborious to perform time domain solutions for the dynamic analysis, since they are time-consuming tasks. So, frequency domain solutions appear to be a possible alternative, mainly in the early stages of a riser design. However, frequency domain analysis is linear and requires that nonlinear effects are treated. The aim of this paper is to present a possible way to treat some of these nonlinearities, using an iterative process together with an analytical correction, and compare the results of a frequency domain analysis with the those of a full nonlinear analysis. [DOI: 10.1115/1.4006149]
Resumo:
The enzyme chitinase from Moniliophthora perniciosa the causative agent of the witches' broom disease in Theobroma cacao, was partially purified with ammonium sulfate and filtration by Sephacryl S-200 using sodium phosphate as an extraction buffer. Response surface methodology (RSM) was used to determine the optimum pH and temperature conditions. Four different isoenzymes were obtained: ChitMp I, ChitMp II, ChitMp III and ChitMp IV. ChitMp I had an optimum temperature at 44-73ºC and an optimum pH at 7.0-8.4. ChitMp II had an optimum temperature at 45-73ºC and an optimum pH at 7.0-8.4. ChitMp III had an optimum temperature at 54-67ºC and an optimum pH at 7.3-8.8. ChitMp IV had an optimum temperature at 60ºC and an optimum pH at 7.0. For the computational biology, the primary sequence was determined in silico from the database of the Genome/Proteome Project of M. perniciosa, yielding a sequence with 564 bp and 188 amino acids that was used for the three-dimensional design in a comparative modeling methodology. The generated models were submitted to validation using Procheck 3.0 and ANOLEA. The model proposed for the chitinase was subjected to a dynamic analysis over a 1 ns interval, resulting in a model with 91.7% of the residues occupying favorable places on the Ramachandran plot and an RMS of 2.68.
Resumo:
Early Diagnosis of Miocardial Dysfunction in Patients with Hematological Malignancies Submitted to Chemotherapy. Preliminary Background: Considering the current diagnostic improvements and tl1erapeutic approaches, patients witl 1 cancer can now be healed or keep the disease under control, still, the chemotherapy may cause heart damage, evolving to Congestive Heart Failure. Recognition of those changes increases the chances of control the endpoints; hence, new parameters of cardiac and fluid mechanics analysis have been used to assess the myocardial function, pursuing an earlier diagnosis of the cardiac alterations. This study aimed to detect early cardiac dysfunction consequently to chemotherapy in patients with hematological malignancies (HM). Methods: Patients with leukemia and lymphoma, submitted to chemotherapy, without knowing heart diseases were studied. Healthy volunteers served as the control group. Conventional 2DE parameters of myocardial function were analyzed. The peak global longitudinal, circumferential and radial left ventricular (LV) strain were deternined by 2D and 3D speckle tracking (STE); peak area strain measured by 3D STE and LV torsionn, twisting rate, recoil / recoil rate assessed by 2D STE. The LV vortex formation time (VFT) during the rapid diastolic filling was estimated by the 2D mitral valve (MV) planimetry and Pulsed Doppler LV inflow by: VFT- 4(1-β) / π x α3 x LVEF Where 1- β is the E wave contribution to the LV stroke volume and α3 is a volumetric variable related to the MV area. The statistical level was settled on 5%. Results: See Table. Conclusion: Despite the differences between the two groups concerning the LVESV, LVEF and E´, those parameters still are in the normal range when considering the patients submitted to chemotherapy; thus, in the clinical setting, they are not so noticeable. The 3D GLS was smaller among the patients, oppositely to the 2D GLS, suggesting that the former variable is more accurate to assess tlhe LV systolic function. The VFT is a dimensionless measure of the optimal vortex development inside the LV chamber; reflecting the efficiency of the diastolic filling and, consequently, blood ejection. This index showed to be diminished in patients with HM submitted to chemotherapy, indicating an impairment of the in1pulse and thrust, hence appearing to be a very early marker of diastolic and systolic dysfunction in this group.
The role of wake stiffness on the wake-induced vibration of the downstream cylinder of a tandem pair
Resumo:
When a pair of tandem cylinders is immersed in a flow the downstream cylinder can be excited into wake-induced vibrations (WIV) due to the interaction with vortices coming from the upstream cylinder. Assi, Bearman & Meneghini ( J. Fluid Mech. , vol. 661, 2010, pp. 365–401) concluded that the WIV excitation mechanism has its origin in the unsteady vortex–structure interaction encountered by the cylinder as it oscillates across the wake. In the present paper we investigate how the cylinder responds to that excitation, characterising the amplitude and frequency of response and its dependency on other parameters of the system. We introduce the concept of wake stiffness , a fluid dynamic effect that can be associated, to a first approximation, with a linear spring with stiffness proportional to Re and to the steady lift force occurring for staggered cylinders. By a series of experiments with a cylinder mounted on a base without springs we verify that such wake stiffness is not only strong enough to sustain oscillatory motion, but can also dominate over the structural stiffness of the system. We conclude that while unsteady vortex–structure interactions provide the energy input to sustain the vibrations, it is the wake stiffness phenomenon that defines the character of the WIV response
Resumo:
Data visualization techniques are powerful in the handling and analysis of multivariate systems. One such technique known as parallel coordinates was used to support the diagnosis of an event, detected by a neural network-based monitoring system, in a boiler at a Brazilian Kraft pulp mill. Its attractiveness is the possibility of the visualization of several variables simultaneously. The diagnostic procedure was carried out step-by-step going through exploratory, explanatory, confirmatory, and communicative goals. This tool allowed the visualization of the boiler dynamics in an easier way, compared to commonly used univariate trend plots. In addition it facilitated analysis of other aspects, namely relationships among process variables, distinct modes of operation and discrepant data. The whole analysis revealed firstly that the period involving the detected event was associated with a transition between two distinct normal modes of operation, and secondly the presence of unusual changes in process variables at this time.
Resumo:
An easy way to determine norepinephrine (NE) in biological fluid using a platinum ultramicroelectrode array (Pt-UMEAs) is described. Issues related to UME electrode surface treatment and characterizations are also addressed. At optimized experimental conditions the dynamic concentration range was 1.0 to 10.0 mu mol?L-1 with a detection limit of 40.5 nmol?L-1. The repeatability of current responses for injections of 5 mu mol?L-1 NE was evaluated to be 4.0?% (n=10). This approach obtained excellent sensitivity, a reliable calibration profile and stable electrochemical response for norepinephrine detection. The content of NE in urine samples without any preconcentration, purification, or pretreatment step, was successfully analyzed by the standard addition method using the Pt-UMEAs.
Resumo:
L. Antonangelo, F. S. Vargas, M. M. P. Acencio, A. P. Cora, L. R. Teixeira, E. H. Genofre and R. K. B. Sales Effect of temperature and storage time on cellular analysis of fresh pleural fluid samples Objective: Despite the methodological variability in preparation techniques for pleural fluid cytology, it is fundamental that the cells should be preserved, permitting adequate morphological classification. We evaluated numerical and morphological changes in pleural fluid specimens processed after storage at room temperature or under refrigeration. Methods: Aliquots of pleural fluid from 30 patients, collected in ethylenediaminetetraacetic acid-coated tubes and maintained at room temperature (21 degrees C) or refrigeration (4 degrees C) were evaluated after 2 and 6 hours and 1, 2, 3, 4, 7 and 14 days. Evaluation of cytomorphology and global and percentage counts of leucocytes, macrophages and mesothelial cells were included. Results: The samples had quantitative cellular variations from day 3 or 4 onwards, depending on the storage conditions. Morphological alterations occurred earlier in samples maintained at room temperature (day 2) than in those under refrigeration (day 4). Conclusions: This study confirms that storage time and temperature are potential pre-analytical causes of error in pleural fluid cytology.
Resumo:
Considerable effort has been made in recent years to optimize materials properties for magnetic hyperthermia applications. However, due to the complexity of the problem, several aspects pertaining to the combined influence of the different parameters involved still remain unclear. In this paper, we discuss in detail the role of the magnetic anisotropy on the specific absorption rate of cobalt-ferrite nanoparticles with diameters ranging from 3 to 14 nm. The structural characterization was carried out using x-ray diffraction and Rietveld analysis and all relevant magnetic parameters were extracted from vibrating sample magnetometry. Hyperthermia investigations were performed at 500 kHz with a sinusoidal magnetic field amplitude of up to 68 Oe. The specific absorption rate was investigated as a function of the coercive field, saturation magnetization, particle size, and magnetic anisotropy. The experimental results were also compared with theoretical predictions from the linear response theory and dynamic hysteresis simulations, where exceptional agreement was found in both cases. Our results show that the specific absorption rate has a narrow and pronounced maxima for intermediate anisotropy values. This not only highlights the importance of this parameter but also shows that in order to obtain optimum efficiency in hyperthermia applications, it is necessary to carefully tailor the materials properties during the synthesis process. (C) 2012 American Institute of Physics. [http://dx.doi.org/10.1063/1.4729271]
Resumo:
Dynamic texture is a recent field of investigation that has received growing attention from computer vision community in the last years. These patterns are moving texture in which the concept of selfsimilarity for static textures is extended to the spatiotemporal domain. In this paper, we propose a novel approach for dynamic texture representation, that can be used for both texture analysis and segmentation. In this method, deterministic partially self-avoiding walks are performed in three orthogonal planes of the video in order to combine appearance and motion features. We validate our method on three applications of dynamic texture that present interesting challenges: recognition, clustering and segmentation. Experimental results on these applications indicate that the proposed method improves the dynamic texture representation compared to the state of the art.