6 resultados para Flight crews
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
The purpose of this study is to apply inverse dynamics control for a six degree of freedom flight simulator motion system. Imperfect compensation of the inverse dynamic control is intentionally introduced in order to simplify the implementation of this approach. The control strategy is applied in the outer loop of the inverse dynamic control to counteract the effects of imperfect compensation. The control strategy is designed using H-infinity theory. Forward and inverse kinematics and full dynamic model of a six degrees of freedom motion base driven by electromechanical actuators are briefly presented. Describing function, acceleration step response and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers.
Resumo:
The major goal of this research was the development and implementation of a control system able to avoid collisions during the flight for a mini-quadrotor helicopter, based only on its embedded sensors without changing the environment. However, it is important to highlight that the design aspects must be seriously considered in order to overcome hardware limitations and achieve control simplification. The controllers of a UAV (Unmanned Aerial Vehicle) robot deal with highly unstable dynamics and strong axes coupling. Furthermore, any additional embedded sensor increases the robot total weight and therefore, decreases its operating time. The best balance between embedded electronics and robot operating time is desired. This paper focuses not only on the development and implementation of a collision avoidance controller for a mini-robotic helicopter using only its embedded sensors, but also on the mathematical model that was essential for the controller developing phases. Based on this model we carried out the development of a simulation tool based on MatLab/Simulink that was fundamental for setting the controllers' parameters. This tool allowed us to simulate and improve the OS4 controllers in different modeled environments and test different approaches. After that, the controllers were embedded in the real robot and the results proved to be very robust and feasible. In addition to this, the controller has the advantage of being compatible with future path planners that we are developing.
Resumo:
Flight activity of foragers of four colonies of Plebeia remota (Holmberg, 1903) was registered from December 1998 to December 1999, using an automated system (photocells and PLC system). The colonies originated from two different regions: Cunha, state of Sao Paulo, and Prudentopolis, state of Parana, Brazil. Flight activity was influenced by different climatic factors in each season. In the summer, the intensity of the correlations between flight activity and climatic factors was smaller than in the other seasons. During the autumn and winter, solar radiation was the factor that most influenced flight activity, while in the spring, this activity was influenced mainly by temperature. Except in the summer, the various climatic factors similarly influenced flight activity of all of the colonies. Flight activity was not affected by geographic origin of the colonies. Information concerning seasonal differences in flight activity of P. remota will be useful for prediction of geographic distribution scenarios under climatic changes.
Resumo:
The aim of the present study was to estimate genetic parameters for flight speed and its association with growth traits in Nellore beef cattle. The flight speed (FS) of 7,402 yearling animals was measured, using a device composed of a pair of photoelectric cells. Time interval data (s) were converted to speed (m/s) and faster animals were regarded as more reactive. The growth traits analyzed were weaning weight (WW), ADG from weaning to yearling age, and yearling scrotal circumference (SC). The (co)variance components were estimated using REML in a multitrait analysis applying an animal model. The model included random direct additive genetic and residual effects, fixed effects of contemporary groups, age of dam (classes), and age of animal as covariable. For WW, the model also included maternal genetic and permanent environmental random effects. The direct heritability estimate for FS was 0.26 +/- 0.05 and direct heritability estimates for WW, SC, and ADG were 0.30 +/- 0.01, 0.48 +/- 0.02, and 0.19 +/- 0.01, respectively. Estimates of the genetic correlation between FS and the growth traits were -0.12 +/- 0.07 (WW), -0.13 +/- 0.08 (ADG), and -0.11 +/- 0.07 (SC). Although the values were low, these correlations showed that animals with better temperaments (slower FS) tended to present better performance. It is possible to infer that long-term selection for weight and scrotal circumference can promote a positive genetic response in the temperament of animals. Nevertheless, to obtain faster genetic progress in temperament, it would be necessary to perform direct selection for such trait. Flight speed is an easily measured indicator of temperament and can be included as a selection criterion in breeding programs for Nellore cattle.
Resumo:
Flight activity of foragers of four colonies of Plebeia remota (Holmberg, 1903) was registered from December 1998 to December 1999, using an automated system (photocells and PLC system). The colonies originated from two different regions: Cunha, state of São Paulo, and Prudentópolis, state of Paraná, Brazil. Flight activity was influenced by different climatic factors in each season. In the summer, the intensity of the correlations between flight activity and climatic factors was smaller than in the other seasons. During the autumn and winter, solar radiation was the factor that most influenced flight activity, while in the spring, this activity was influenced mainly by temperature. Except in the summer, the various climatic factors similarly influenced flight activity of all of the colonies. Flight activity was not affected by geographic origin of the colonies. Information concerning seasonal differences in flight activity of P. remota will be useful for prediction of geographic distribution scenarios under climatic changes.
Resumo:
The purpose of this study is to apply inverse dynamics control for a six degree of freedom flight simulator motion system. Imperfect compensation of the inverse dynamic control is intentionally introduced in order to simplify the implementation of this approach. The control strategy is applied in the outer loop of the inverse dynamic control to counteract the effects of imperfect compensation. The control strategy is designed using H∞ theory. Forward and inverse kinematics and full dynamic model of a six degrees of freedom motion base driven by electromechanical actuators are briefly presented. Describing function, acceleration step response and some maneuvers computed from the washout filter were used to evaluate the performance of the controllers.