3 resultados para Flavones

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

10.00% 10.00%

Publicador:

Resumo:

Polyamine biosynthesis enzymes are promising drug targets for the treatment of leishmaniasis, Chagas' disease and African sleeping sickness. Arginase, which is a metallohydrolase, is the first enzyme involved in polyamine biosynthesis and converts arginine into ornithine and urea. Ornithine is used in the polyamine pathway that is essential for cell proliferation and ROS detoxification by trypanothione. The flavonols quercetin and quercitrin have been described as antitrypanosomal and antileishmanial compounds, and their ability to inhibit arginase was tested in this work. We characterized the inhibition of recombinant arginase from Leishmania (Leishmania) amazonensis by quercetin, quercitrin and isoquercitrin. The IC50 values for quercetin, quercitrin and isoquercitrin were estimated to be 3.8, 10 and 4.3 mu M, respectively. Quercetin is a mixed inhibitor, whereas quercitrin and isoquercitrin are uncompetitive inhibitors of L. (L.) amazonensis arginase. Quercetin interacts with the substrate L-arginine and the cofactor Mn2+ at pH 9.6, whereas quercitrin and isoquercitrin do not interact with the enzyme's cofactor or substrate. Docking analysis of these flavonols suggests that the cathecol group of the three compounds interact with Asp129, which is involved in metal bridge formation for the cofactors Mn-A(2+) and Mn-B(2+) in the active site of arginase. These results help to elucidate the mechanism of action of leishmanicidal flavonols and offer new perspectives for drug design against Leishmania infection based on interactions between arginase and flavones. (C) 2012 Elsevier Inc. All rights reserved.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

The proposed role of anthocyanins in protecting plants against excess solar radiation is consistent with the occurrence of ultrafast (525 ps) excited-state proton transfer as the major de-excitation pathway of these molecules. However, because natural anthocyanins absorb mainly in the visible region of the spectra, with only a narrow absorption band in the UV-B region, this highly efficient deactivation mechanism would essentially only protect the plant from visible light. On the other hand, ground-state charge-transfer complexes of anthocyanins with naturally occurring electron-donor co-pigments, such as hydroxylated flavones, flavonoids, and hydroxycinnamic or benzoic acids, do exhibit high UV-B absorptivities that complement that of the anthocyanins. In this work, we report a comparative study of the photophysics of the naturally occurring anthocyanin cyanin, intermolecular cyanincoumaric acid complexes, and an acylated anthocyanin, that is, cyanin with a pendant coumaric ester co-pigment. Both inter- and intramolecular anthocyaninco-pigment complexes are shown to have ultrafast energy dissipation pathways comparable to those of model flavylium cationco-pigment complexes. However, from the standpoint of photoprotection, the results indicate that the covalent attachment of co-pigment molecules to the anthocyanin represents a much more efficient strategy by providing the plant with significant UV-B absorption capacity and at the same time coupling this absorption to efficient energy dissipation pathways (ultrafast internal conversion of the complexed form and fast energy transfer from the excited co-pigment to the anthocyanin followed by adiabatic proton transfer) that avoid net photochemical damage.

Relevância:

10.00% 10.00%

Publicador:

Resumo:

Chemical study of three medicinal plants: from leaves of Piper renitens (Miq.) Yunck, Piperaceae, and Siparuna guianensis Aubl., Siparunaceae, and from flowers of Alternanthera brasiliana (L.) Kuntze, Amaranthaceae, resulted in isolation of nine compounds: three steroids, β-sitosterol, stigmasterol from P. renitens and sitosterol-3-O-β-D-glucopyranoside from A. brasiliana, the diterpene kaurane ent-kauran-16α,17-diol from P. renitens, two derivatives kaempferol-methylether, kumatakenine (kaempferol-3,7-dimethylether) and kaempferol-3,7,3'-trimethylether from S. guianensis and three flavones, crysoeriol (5,7,4'-trihydroxy-3'-methoxyflavone), tricin (5,7,4'-trihydroxy-3',5'-dimethoxyflavone) and 7-O-β-D-glucopyranoside-5,4'-dihydroxy-3'-methoxyflavone from A. brasiliana. Compounds structures were determinate using 1D and 2D ¹H NMR and 13C spectral data, mass and IR spectra, comparing with literature data.