5 resultados para Fishes--Effect of temperature on.
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
Objectives: This study evaluated the degree of conversion (DC) and working time (WT) of two commercial, dual-cured resin cements polymerized at varying temperatures and under different curing-light accessible conditions, using Fourier transformed infrared analysis (FTIR). Materials and Methods: Calibra (Cal; Dentsply Caulk) and Variolink II (Ivoclar Vivadent) were tested at 25 degrees C or preheated to 37 degrees C or 50 degrees C and applied to a similar-temperature surface of a horizontal attenuated-total-reflectance unit (ATR) attached to an infrared spectrometer. The products were polymerized using one of four conditions: direct light exposure only (600 mW/cm(2)) through a glass slide or through a 1.5- or 3.0-mm-thick ceramic disc (A2 shade, IPS e.max, Ivoclar Vivadent) or allowed to self-cure in the absence of light curing. FTIR spectra were recorded for 20 min (1 spectrum/s, 16 scans/spectrum, resolution 4 cm(-1)) immediately after application to the ATR. DC was calculated using standard techniques of observing changes in aliphatic-to-aromatic peak ratios precuring and 20-min postcuring as well as during each 1-second interval. Time-based monomer conversion analysis was used to determine WT at each temperature. DC and WT data (n=6) were analyzed by two-way analysis of variance and Tukey post hoc test (p=0.05). Results: Higher temperatures increased DC regardless of curing mode and product. For Calibra, only the 3-mm-thick ceramic group showed lower DC than the other groups at 25 degrees C (p=0.01830), while no significant difference was observed among groups at 37 degrees C and 50 degrees C. For Variolink, the 3-mm-thick ceramic group showed lower DC than the 1-mm-thick group only at 25 degrees C, while the self-cure group showed lower DC than the others at all temperatures (p=0.00001). WT decreased with increasing temperature: at 37 degrees C near 70% reduction and at 50 degrees C near 90% for both products, with WT reduction reaching clinically inappropriate times in some cases (p=0.00001). Conclusion: Elevated temperature during polymerization of dual-cured cements increased DC. WT was reduced with elevated temperature, but the extent of reduction might not be clinically acceptable.
Resumo:
L. Antonangelo, F. S. Vargas, M. M. P. Acencio, A. P. Cora, L. R. Teixeira, E. H. Genofre and R. K. B. Sales Effect of temperature and storage time on cellular analysis of fresh pleural fluid samples Objective: Despite the methodological variability in preparation techniques for pleural fluid cytology, it is fundamental that the cells should be preserved, permitting adequate morphological classification. We evaluated numerical and morphological changes in pleural fluid specimens processed after storage at room temperature or under refrigeration. Methods: Aliquots of pleural fluid from 30 patients, collected in ethylenediaminetetraacetic acid-coated tubes and maintained at room temperature (21 degrees C) or refrigeration (4 degrees C) were evaluated after 2 and 6 hours and 1, 2, 3, 4, 7 and 14 days. Evaluation of cytomorphology and global and percentage counts of leucocytes, macrophages and mesothelial cells were included. Results: The samples had quantitative cellular variations from day 3 or 4 onwards, depending on the storage conditions. Morphological alterations occurred earlier in samples maintained at room temperature (day 2) than in those under refrigeration (day 4). Conclusions: This study confirms that storage time and temperature are potential pre-analytical causes of error in pleural fluid cytology.
Resumo:
OSCILLATORY DYNAMICS IN SYSTEMS CONTAINING BROMATE AND 1,4-CYCLOHEXANEDIONE IN ACIDIC MEDIA. I. THE EFFECT OF TEMPERATURE. We present in this work the influence of temperature on the dynamics of homogeneous chemical systems containing bromate and 1,4-cyclohexanedione (1,4-CHD) in acidic media. In particular, the following systems were studied: bromate/1,4-CHD/acid, bromate/1,4-CHD/ferroin/acid and bromate/1,4-CHD/trisbipyridine ruthenium/acid. Investigations were carried out by means of an electrochemical probe, at five temperatures between 5 and 45 degrees C. Activation energies (E-a) were estimated in different ways for the pre-oscillatory and oscillatory regimes. In any case, the E-a was found to depend on the catalyst, composition and initial concentrations. In addition, it was observed that ferroin and trisbipyridine ruthenium act as catalysts only during the transition between the induction period and oscillatory regime.
Resumo:
This study evaluated by an in vitro model the effect of beverages on dental enamel previously subjected to erosive challenge with hydrochloric acid. The factor under study was the type of beverage, in five levels: Sprite® Zero Low-calorie Soda Lime (positive control), Parmalat® ultra high temperature (UHT) milk, Ades® Original soymilk, Leão® Ice Tea Zero ready-to-drink low-calorie peach-flavored black teaand Prata® natural mineral water (negative control). Seventy-five bovine enamel specimens were distributed among the five types of beverages (n=15), according to a randomized complete block design. For the formation of erosive wear lesions, the specimens were immersed in 10 mL aqueous solution of hydrochloric acid 0.01 M for 2 min. Subsequently, the specimens were immersed in 20 mL of the beverages for 1 min, twice daily for 2 days at room temperature. In between, the specimens were kept in 20 mL of artificial saliva at 37ºC. The response variable was the quantitative enamel microhardness. ANOVA and Tukey's test showed highly significant differences (p<0.00001) in the enamel exposed to hydrochloric acid and beverages. The soft drink caused a significantly higher decrease in microhardness compared with the other beverages. The black tea caused a significantly higher reduction in microhardness than the mineral water, UHT milk and soymilk, but lower than the soft drink. Among the analyzed beverages, the soft drink and the black tea caused the most deleterious effects on dental enamel microhardness.
Resumo:
Ribonucleotides have shown many promising applications in food and pharmaceutical industries. The aim of the present study was to produce ribonucleotides (RNA) by Kluyveromyces marxianus ATCC 8,554 utilizing cheese whey, a dairy industry waste, as a main substrate under batch fermentation conditions. The effects of temperature, pH, aeration rate, agitation and initial cellular concentration were studied simultaneously through factorial design for RNA, biomass production and lactose consumption. The maximum RNA production (28.66 mg/g of dry biomass) was observed at temperature 30°C, pH 5.0 and 1 g/l of initial cellular concentration after 2 h of fermentation. Agitation and aeration rate did not influence on RNA concentration (p >0.05). Maximum lactose consumption (98.7%) and biomass production (6.0 g/l) was observed after 12 h of incubation. This study proves that cheese whey can be used as an adequate medium for RNA production by K. marxianus under the optimized conditions at industrial scale.