6 resultados para Firefly
em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo
Resumo:
(Gyllenhal) is a common firefly in the Southeastern region of Brazil. Adults and larvae were collected in the municipality of Campinas, state of So Paulo, Brazil, and the immature stages were described and reared in the laboratory. Four generations were reproduced in the laboratory, and a method for its rearing was established. The life cycle usually lasts 6 months, but under optimal laboratory conditions, it lasted from 2 to 4 months. Larvae were fed with and snails since the beginning of the larval stage. This species was found to be easily adapted to environments under anthropic influence, such as urban areas and farms.
Resumo:
This work describes the synthesis of five O-silyloxy-1,3-thiazoles and their use as fast-response turn-on probes for fluoride ion detection in polar aprotic solvents and in aqueous cetyltrimethylammonium bromide micellar medium. The fluoride-triggered deprotection of these silyl ethers results in ca. 180-nm shifts in the fluorescence emission wavelengths. All compounds are suitable for the detection of fluoride ions with a detection limit in DMSO of 107 mol?L1; derivatives containing a 2-pyridyl moiety in the thiazole system are more efficient than those with a 3- or 4-pyridyl moiety. Typical anionic interferents, such as acetate or chloride, are not detected by O-silyloxy-1,3-thiazoles, making these compounds very specific for fluoride.
Resumo:
The chemiluminescence of cyclic peroxides activated by oxidizable fluorescent dyes is an example of chemically initiated electron exchange luminescence (CIEEL), which has been used also to explain the efficient bioluminescence of fireflies. Diphenoyl peroxide and dimethyl-1,2-dioxetanone were used as model compounds for the development of this CIEEL mechanism. However, the chemiexcitation efficiency of diphenoyl peroxide was found to be much lower than originally described. In this work, we redetermine the chemiexcitation quantum efficiency of dimethyl-1,2-dioxetanone, a more adequate model for firefly bioluminescence, and found a singlet quantum yield (Phi(s)) of 0.1%, a value at least 2 orders of magnitude lower than previously reported. Furthermore, we synthesized two other 1,2-dioxetanone derivatives and confirm the low chemiexcitation efficiency (Phi(s) < 0.1%) of the intermolecular CIEEL-activated decomposition of this class of cyclic. peroxides. These results are compared with other chemiluminescent reactions, supporting the general trend that intermolecular CIEEL systems are much less efficient in generating singlet excited states than analogous intramolecular processes (Phi(s) approximate to 50%), with the notable exception of the peroxyoxalate reaction (Phi(s) approximate to 60%).
Resumo:
Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, alpha-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time.
Resumo:
The widespread independent evolution of analogous bioluminescent systems is one of the most impressive and diverse examples of convergent evolution on earth. There are roughly 30 extant bioluminescent systems that have evolved independently on Earth, with each system likely having unique enzymes responsible for catalysing the bioluminescent reaction. Bioluminescence is a chemical reaction involving a luciferin molecule and a luciferase or photoprotein that results in the emission of light. Some independent systems utilize the same luciferin, such as the use of tetrapyrrolic compounds by krill and dinoflagellates, and the wide use of coelenterazine by marine organisms, while the enzymes involved are unique. One common thread among all the different bioluminescent systems is the requirement of molecular oxygen. Bioluminescence is found in most forms of life, especially marine organisms. Bioluminescence in known to benefit the organism by: attraction, repulsion, communication, camouflage, and illumination. The marine ecosystem is significantly affected by bioluminescence, the only light found in the pelagic zone and below is from bioluminescent organisms. Transgenic bioluminescent organisms have revolutionized molecular research, medicine and the biotechnology industry. The use of bioluminescence in studying molecular pathways and disease allows for non-invasive and real-time analysis. Bioluminescence-based assays have been developed for several analytes by coupling luminescence to many enzyme-catalysed reactions. Received 17 February 2012, accepted 27 March 2012, first published online 2 May 2012
Resumo:
Cyclic four-membered ring peroxides are important high-energy intermediates in a variety of chemi and bioluminescence transformations. Specifically, α-peroxylactones (1,2-dioxetanones) have been considered as model systems for efficient firefly bioluminescence. However, the preparation of such highly unstable compounds is extremely difficult and, therefore, only few research groups have been able to study the properties of these substances. In this study, the synthesis, purification and characterization of three 1,2-dioxetanones are reported and a detailed procedure for the known synthesis of diphenoyl peroxide, another important model compound for the chemical generation of electronically excited states, is provided. For most of these peroxides, the complete spectroscopic characterization is reported here for the first time.