8 resultados para Fibra de sisal

em Biblioteca Digital da Produção Intelectual da Universidade de São Paulo


Relevância:

20.00% 20.00%

Publicador:

Resumo:

Cultivation of sisal, a plant with a short growth cycle, is highly productive in Brazil. This work is part of extensive research in which sisal is valued. In these studies, sisal fibers are used in the preparation of bio-based composites and in the derivatization of the pulp, including posterior preparation of films. This study aimed to examine the use of sisal pulp in the production of bioethanol, which can potentially be a high efficiency process because of the cellulose content of this fiber. A previous paper addressed the hydrolysis of sisal pulp using sulfuric acid as a catalyst. In the present study, the influence of the mercerization process on the acid hydrolysis of sisal pulp was evaluated. Mercerization was achieved in a 20% wt NaOH solution, and the cellulosic pulp was suspended and vigorously mixed for 1, 2 and 3 h, at 50 A degrees C. The previously characterized mercerized pulps were hydrolyzed (100 A degrees C, 30% H2SO4, v/v), and the results are compared with those obtained for unmercerized pulp (described in a companion paper). The starting sample was characterized by viscometry, alpha-cellulose content, crystallinity index and scanning electron microscopy. During the reactions, aliquots were withdrawn, and the liquor was analyzed by HPLC. The residual pulps (non-hydrolyzed) were also characterized by the techniques described for the initial sample. The results revealed that pretreatment decreases the polyoses content as well as causes a decrease of up to 23% in the crystallinity and up to 21% in the average molar mass of cellulose after 3 h of mercerization. The mercerization process proved to be very important to achieve the final target. Under the same reaction conditions (30% and 100 A degrees C, 6 h), the hydrolysis of mercerized pulp generated yields of up to 50% more glucose. The results of this paper will be compared with the results of subsequent studies obtained using other acids, and enzymes, as catalysts.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

Objectives: To assess the relationship between the CHS frailty criteria (Fried et al., 2001) and cognitive performance. Design: Cross sectional and population-based. Setting: Ermelino Matarazzo, a poor sub district of the city of Sao Paulo, Brazil. Participants: 384 community dwelling older adults, 65 and older. Measurements: Assessment of the CHS frailty criteria, the Brief Cognitive Screening Battery (memorization of 10 black and white pictures, verbal fluency animal category, and the Clock Drawing Test) and the Mini-Mental State Examination (MMSE). Results: Frail older adults performed significantly lower than non-frail and pre frail elderly in most cognitive variables. Grip strength and age were associated to MMSE performance, age was associated to delayed memory recall, gait speed was associated to verbal fluency and CDT performance, and education was associated to CDT performance. Conclusion: Being frail may be associated with cognitive decline, thus, gerontological assessments and interventions should consider that these forms of vulnerability may occur simultaneously.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

A tannin-phenolic resin (40 wt% of tannin, characterized by H-1 nuclear magnetic resonance (NMR) and C-13 NMR, Fourier transform infrared, thermogravimetry, differential scanning calorimetry) was used to prepare composites reinforced with sisal fibers (30-70 wt%). Inverse gas chromatography results showed that the sisal fibers and the tannin-phenolic thermoset have close values of the dispersive component and also have predominance of acid sites (acid character) at the surface, confirming the favoring of interaction between the sisal fibers and the tannin-phenolic matrix at the interface. The Izod impact strength increased up to 50 wt% of sisal fibers. This composite also showed high storage modulus, and the lower loss modulus, confirming its good fiber/matrix interface, also observed by SEM images. A composite with good properties was prepared from high content of raw material obtained from renewable sources (40 wt% of tannin substituted the phenol in the preparation of the matrix and 50 wt% of matrix was replaced by sisal fibers). (C) 2012 Elsevier Ltd. All rights reserved.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The present work is inserted into the broad context of the upgrading of lignocellulosic fibers. Sisal was chosen in the present study because more than 50% of the world's sisal is cultivated in Brazil, it has a short life cycle and its fiber has a high cellulose content. Specifically, in the present study, the subject addressed was the hydrolysis of the sisal pulp, using sulfuric acid as the catalyst. To assess the influence of parameters such as the concentration of the sulfuric acid and the temperature during this process, the pulp was hydrolyzed with various concentrations of sulfuric acid (30-50%) at 70 A degrees C and with 30% acid (v/v) at various temperatures (60-100 A degrees C). During hydrolysis, aliquots were withdrawn from the reaction media, and the solid (non-hydrolyzed pulp) was separated from the liquid (liquor) by filtering each aliquot. The sugar composition of the liquor was analyzed by HPLC, and the non-hydrolyzed pulps were characterized by viscometry (average molar mass), and X-ray diffraction (crystallinity). The results support the following conclusions: acid hydrolysis using 30% H2SO4 at 100 A degrees C can produce sisal microcrystalline cellulose and the conditions that led to the largest glucose yield and lowest decomposition rate were 50% H2SO4 at 70 A degrees C. In summary, the study of sisal pulp hydrolysis using concentrated acid showed that certain conditions are suitable for high recovery of xylose and good yield of glucose. Moreover, the unreacted cellulose can be targeted for different applications in bio-based materials. A kinetic study based on the glucose yield was performed for all reaction conditions using the kinetic model proposed by Saeman. The results showed that the model adjusted to all 30-35% H2SO4 reactions but not to greater concentrations of sulfuric acid. The present study is part of an ongoing research program, and the results reported here will be used as a comparison against the results obtained when using treated sisal pulp as the starting material.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

The replacement of phenol with sodium lignosulfonate and formaldehyde with glutaraldehyde in the preparation of resins resulted in a new resol-type phenolic resin, sodium lignosulfonate-glutaraldehyde resin, in addition to sodium lignosulfonate-formaldehyde and phenol-formaldehyde resins. These resins were then used to prepare thermosets and composites reinforced with sisal fibers. Different techniques were used to characterize raw materials and/or thermosets and composites, including inverse gas chromatography, thermogravimetric analysis, and mechanical impact and flexural tests. The substitution of phenol by sodium lignosulfonate in the formulation of the composite matrices increased the impact strength of the respective composites from approximately 400 Jm(-1) to 800 J m(-1) and 1000 J m(-1), showing a considerable enhancement from the replacement of phenol with sodium lignosulfonate. The wettability of the sisal fibers increased when the resins were prepared from sodium lignosulfonate, generating composites in which the adhesion at the fiber-matrix interface was stronger and favored the transference of load from the matrix to the fiber during impact. Results suggested that the composites experienced a different mechanism of load transfer from the matrix to the fiber when a bending load was applied, compared to that experienced during impact. The thermogravimetric analysis results demonstrated that the thermal stability of the composites was not affected by the use of sodium lignosulfonate as a phenolic-type reagent during the preparation of the matrices.

Relevância:

20.00% 20.00%

Publicador:

Resumo:

O treinamento físico (TF) aeróbio tem sido utilizado como um importante tratamento não farmacológico na hipertensão arterial (HA), uma vez que ele reduz a pressão arterial. Estudos mostram que as anormalidades do músculo esquelético na HA estão associados à rarefação capilar, um aumento na porcentagem de fibras de contração rápida (tipo II), com predominância do metabolismo glicolítico e um aumento da fadiga muscular. Entretanto, pouco se conhece sobre os efeitos do TF sobre estes parâmetros na HA. Nós hipotetizamos que o TF corrija a rarefação capilar potencialmente contribuindo para a restauração da proporção dos tipos de fibras musculares. Ratos espontaneamente hipertensos (SHR, n=14) e Wistar Kyoto (WKY, n=14) com 12 semanas de vida e divididos em 4 grupos: SHR, SHR treinado (SHR-T), WKY e WKY treinado (WKY-T) foram estudados. Como esperado, 10 semanas de TF foi efetivo em reduzir a pressão arterial em SHR-T. Além disso, avaliamos os principais marcadores de TF. A bradicardia de repouso, o aumento da tolerância a realização de esforço, do consumo de oxigênio de pico e da atividade da enzima citrato sintase muscular nos grupos de animais treinados (WKY-T e SHR-T) mostram que a condição aeróbia foi alcançada com este TF. O TF também corrigiu a rarefação capilar no músculo sóleo em SHR-T. Em paralelo, foi observada uma redução na porcentagem de fibras do tipo IIA e IIX, ao passo que aumentou a porcentagem de fibras do tipo I induzidas pelo TF na HA. Estes resultados sugerem que o TF previne as alterações na composição dos tipos de fibras no músculo sóleo em SHR, uma vez que a angiogênese e o aumento da atividade da enzima citrato sintase são umas das mais importantes adaptações ao TF aeróbio, atuando na manutenção do metabolismo oxidativo e do perfil de fibras do músculo.

Relevância:

20.00% 20.00%

Publicador:

Relevância:

20.00% 20.00%

Publicador: